Input path: /home/debian/html/nutritwin/output_llm/6610187e2bee7/input.json
Output path: /home/debian/html/nutritwin/output_llm/6610187e2bee7/output.json
Input text: Est escalope de veau
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user: Est escalope de veau
==================================================================================================================================
==================================== Prompt =============================================
Identify in this list of intents: ["Capture the user food consumption", "Capture the user physical activity", "Other intent"], the intents of the prompt: ###Est escalope de veau###.
Format the result in JSON format: {intents: []}.
=========================================================================================
------------------------------ LLM Raw response -----------------------------
{
"intents": ["Capture the user food consumption"]
}
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
{
"intents": ["Capture the user food consumption"]
}
------------------------------------------------------
------------------------ After simplification ------------------------
{"intents": ["Capture the user food consumption"]}
----------------------------------------------------------------------
==================================== Prompt =============================================
I need to identify food information from sentences.
Analyze the following french sentence: "Est escalope de veau".
I want to identify for the food or beverage: the name, the type, the quantity for each ingredient and, if it exists, identify the brand, the cooking mode and the company name.
Containers, like "canette" or "verre", are quantities and not ingredients or food product.
"Portions", like "tranche", are quantities.
"Quantity" is in french.
"Company" is the company of the brand.
"Quignon" is a quantity.
Ignore what it is not connected to nutrition, beverage or food.
Music and is not nutrition.
Extract how the product is consumed.
In the name, ignore the level of cooking mode.
When brand is not specified and the product is very well-known (like "Coca-Cola"), provide the brand name in "brand", otherwise set "brand" to "".
Ignore the actions.
The restaurants are not brand.
Identify what type of food.
Ignore food with a negative verb, ex "Je n'ai pas pris de viande".
Do not extract ingredients for product with a brand.
If the food or beverage consumption is in the past, the event is a "declaration", for example: "J'ai mangé du pain", the event is a declaration.
If the food or beverage consumption will be in the future or even soon, the event is an "intent", for example: "Je vais manger du pain", the event is an intent.
Otherwise the event is unknown.
Map the event of eating on ["intent", "declaration", "unknown"].
Identify the time of day when the foods were eaten and map it on "petit-déjeuner", "déjeuner", "grignotage" or "dîner".
Format the result in french in JSON in an array of tuples {"name":, "quantity":, "cooking":, "brand":, "company":, "type":, "time":, "event":}.
=========================================================================================
------------------------------ LLM Raw response -----------------------------
Based on your instructions, I have analyzed the sentence "Est escalope de veau". However, the sentence is grammatically incorrect and lacks context. I will assume that the sentence is "C'est une escalope de veau." (It's a veal cutlet.)
Here is the information extracted from the sentence:
```json
[
{
"name": "escalope de veau",
"quantity": "une",
"cooking": "",
"brand": "",
"company": "",
"type": "viande",
"time": "unknown",
"event": "unknown"
}
]
```
Explanation:
- The name of the food is "escalope de veau" (veal cutlet).
- The quantity is "une" (one).
- The cooking method is not specified in the sentence.
- The brand and the company are not mentioned in the sentence.
- The type of food is "viande" (meat).
- The time of eating is not specified in the sentence.
- The event (intent, declaration, or unknown) is unknown because the sentence does not provide information about when or if the food was or will be consumed.
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
Based on your instructions, I have analyzed the sentence "Est escalope de veau". However, the sentence is grammatically incorrect and lacks context. I will assume that the sentence is "C'est une escalope de veau." (It's a veal cutlet.)
Here is the information extracted from the sentence:
```json
[
{
"name": "escalope de veau",
"quantity": "une",
"cooking": "",
"brand": "",
"company": "",
"type": "viande",
"time": "unknown",
"event": "unknown"
}
]
```
Explanation:
- The name of the food is "escalope de veau" (veal cutlet).
- The quantity is "une" (one).
- The cooking method is not specified in the sentence.
- The brand and the company are not mentioned in the sentence.
- The type of food is "viande" (meat).
- The time of eating is not specified in the sentence.
- The event (intent, declaration, or unknown) is unknown because the sentence does not provide information about when or if the food was or will be consumed.
------------------------------------------------------
------------------------ After simplification ------------------------
[ { "name": "escalope de veau", "quantity": "une", "cooking": "", "brand": "", "company": "", "type": "viande", "time": "unknown", "event": "unknown" }]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'escalope de veau', 'quantity': 'une', 'cooking': '', 'brand': '', 'company': '', 'type': 'viande', 'time': 'unknown', 'event': 'unknown'}], 'cost': 0.0633}
--------------------------------------------------------------------------------
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% escalope de veau %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Escalope de Veau - escalope de veau - - - 1511 - - - KCA#5f594c902a0662d62970fa1c929be64b
Escalope de Veau Panée - escalope de veau panee - - - 154 - - - KCA#8b2f6354edbdae256bacf2dd887f66b7
Escalope de Veau Grillée - escalope de veau grillee - - - 86 - - - KCA#3fa342b26e621889b75c9883027f2b62
Escalopes de Veau Bohémienne - escalope de veau bohemienne - - - 11 - - - KCA#008dc6d99c87ab379d15cd3c2c80fe9d
----------------------------------------------------
--------------------------------- final result -----------------------------------
{'prompt': 'Est escalope de veau', 'intents': ['Capture the user food consumption'], 'model': 'mistral-large-latest', 'solutions': {'nutrition': [{'name': 'Escalope de Veau', 'normName': ' escalope de veau ', 'comment': '', 'normComment': '', 'rank': 1511, 'id': 'KCA#5f594c902a0662d62970fa1c929be64b', 'quantity': 'une', 'quantityLem': '1', 'pack': ['ESC.w150'], 'type': 'viande', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': 'unknown', 'event': 'unknown', 'serving': 'ESC-100', 'posiNormName': 0}], 'activity': []}, 'cputime': 12.513740539550781}
----------------------------------------------------------------------------------
LLM CPU Time: 12.513740539550781