Input path: /home/debian/html/nutritwin/output_llm/6611362c1e1fb/input.json Output path: /home/debian/html/nutritwin/output_llm/6611362c1e1fb/output.json Input text: Lieu noir DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: Lieu noir ================================================================================================================================== ==================================== Prompt ============================================= Identify in this list of intents: ["Capture the user food consumption", "Capture the user physical activity", "Other intent"], the intents of the prompt: ###Lieu noir###. Format the result in JSON format: {intents: []}. ========================================================================================= ------------------------------ LLM Raw response ----------------------------- { "intents": ["Other intent"] } ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ { "intents": ["Other intent"] } ------------------------------------------------------ ------------------------ After simplification ------------------------ {"intents": ["Other intent"]} ---------------------------------------------------------------------- --------------------------------- final result ----------------------------------- {'prompt': 'Lieu noir', 'intents': ['Other intent'], 'model': 'mistral-large-latest', 'solutions': {'nutrition': [], 'activity': []}, 'cputime': 0.41951966285705566} ---------------------------------------------------------------------------------- LLM CPU Time: 0.41951966285705566