Input path: /home/debian/html/nutritwin/output_llm/663a555f3c5fe/input.json Output path: /home/debian/html/nutritwin/output_llm/663a555f3c5fe/output.json Input text: J'ai mange une pizza, combien de cals? DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: J'ai mange une pizza, combien de cals? ================================================================================================================================== ==================================== Prompt ============================================= Identify in this list of intents: ["Identify food consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###J'ai mange une pizza, combien de cals?###. Format the result in JSON format: {intents: []}. ========================================================================================= ------------------------------ LLM Raw response ----------------------------- ```json { "intents": ["Identify food consumption or declaration", "Answer a nutrition question"] } ``` ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ ```json { "intents": ["Identify food consumption or declaration", "Answer a nutrition question"] } ``` ------------------------------------------------------ ------------------------ After simplification ------------------------ { "intents": ["Identify food consumption or declaration", "Answer a nutrition question"]} ---------------------------------------------------------------------- ==================================== Prompt ============================================= Convert this natural language query : """J'ai mange une pizza, combien de cals?""" into an array in JSON of consumed foods and beverages. Provide a solution without explanation. Use only the ontology described in this RDF model: """ @prefix food: . @prefix rdfs: . @prefix xsd: . @prefix owl: . @prefix prov: . food: a owl:Ontology ; rdfs:comment "Definition of the food archetype"@en . food:name a owl:DatatypeProperty; rdfs:label "name"@en; rdfs:comment "Food or drink identifier, the name should not contain information related to quantity or container (like glass...). The cooking mode is not in the name. Keep the same language"@en; rdfs:range xsd:string. food:quantity a owl:DatatypeProperty ; rdfs:label "quantity"@en; rdfs:comment "The quantity of food or drink that is or was consumed. Quantity examples in french: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en; rdfs:range xsd:string. food:cookingMethod a owl:DatatypeProperty ; rdfs:label "cooking method"@en; rdfs:comment "The cooking method of food. Keep the same language"@en; rdfs:range xsd:string. food:type a owl:DatatypeProperty ; rdfs:label "type of food"@en; rdfs:comment "Identify the type of food."@en; rdfs:range xsd:string. food:food a food:type ; rdfs:label "food" . food:beverage a food:type ; rdfs:label "beverage" . food:timeOfTheDay a owl:DatatypeProperty ; rdfs:label "time of the day"@en; rdfs:comment "Time of the day when food or drink was consumed."@en; rdfs:range xsd:string. food:breakfast a food:timeOfTheDay ; rdfs:label "breakfast" . food:lunch a food:timeOfTheDay ; rdfs:label "lunch" . food:snacking a food:timeOfTheDay ; rdfs:label "snacking" . food:dinner a food:timeOfTheDay ; rdfs:label "dinner" . food:brand a owl:DatatypeProperty ; rdfs:label "Brand"@en; rdfs:comment "Food or beverage brand. The restaurants are not brand. When the 'brand' is not specified and, the food or beverage is very well-known (like 'Coca-Cola'), provide the brand name in 'brand', otherwise set 'brand' to ''."@en; rdfs:range xsd:string. food:company a owl:DatatypeProperty ; rdfs:label "Company"@en; rdfs:comment "Product company."@en; rdfs:range xsd:string. food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range xsd:string. food:intent a food:event ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:event ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:event ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. """ ========================================================================================= ------------------------------ LLM Raw response ----------------------------- ```json [ { "food:name": "pizza", "food:quantity": "une", "food:event": "declaration" } ] ``` ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ ```json [ { "food:name": "pizza", "food:quantity": "une", "food:event": "declaration" } ] ``` ------------------------------------------------------ ------------------------ After simplification ------------------------ [ { "food:name": "pizza", "food:quantity": "une", "food:event": "declaration" }] ---------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': [{'food:name': 'pizza', 'food:quantity': 'une', 'food:event': 'declaration'}], 'cost': 0.0} -------------------------------------------------------------------------------- ----------- result to be analyzed ----------- {'name': 'pizza', 'quantity': 'une', 'event': 'declaration'} First try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% pizza %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL) ------------- Found solution (max 20) -------------- Pizza - pizza - - - 10599 - - - CIQ#733e507c20c6036da06902e2929056db Pizza - pizza - - - 0 - - - KCA#733e507c20c6036da06902e2929056db Pizza - pizza - sauce garniture pour - - 0 - - - CIQ#a275181c086396e0bec873fcc94008cb Pizza Kebab - pizza kebab - - - 6 - - - CIQ#6bbe41be8630f033bfe294b94bbf8d0c Pizza Moyenne - pizza moyenne - - - 38 - - - KCA#9bdfcad1de65c2ebcc7384d0aa3fa55f Pizza au Thon - pizza thon - - - 16 - - - CIQ#5f444b59309014aeab27095b6eb2d95b Pizza Fromage - pizza fromage - - - 0 - - - KCA#5175d910a3bb5ffe553ada3ee1d50309 Pizza au Poulet - pizza poulet - - - 0 - - - CIQ#33e0a5ea4366eeb0aad919629cf8f008 Pizza au Saumon - pizza saumon - - - 0 - - - CIQ#531c0deee226a1ed25c6ad7e9344ecef Pizza 4 Fromages - pizza fromage - - - 2361 - - - CIQ#5175d910a3bb5ffe553ada3ee1d50309 Pizza 'Spéciale' - pizza speciale - - - 146 - - - KCA#a6f6dd5434366be39fec21c560e1457e Pizza à la Poêle - pizza poele - - - 64 - - - KCA#2cd730363965f0d5363b216aaaa75f26 Pizza Boulangerie - pizza boulangerie - - - 318 - - - KCA#291611656924ce924ca7d5200705c55e Pizza à la Viande - pizza viande - type bolognaise - - 0 - - - CIQ#b17f77e6924678e84c353cde4ec8bdc4 Pizza aux Lardons - pizza au lardon - oignons et fromage - - 0 - - - CIQ#2ff2fb0af20f513208206f7883b4b537 Pizzas Végétariennes - pizza vegetarienne - - - 566 - - - KCA#9f884aabd1a0211b685859e3d93bb8c8 Pizza Jambon Fromage - pizza jambon fromage - - - 405 - - - CIQ#a5c5fe6f659b72fa37b3770428f770e9 Pizza Jambon Fromage - pizza jambon fromage - - - 0 - - - KCA#a5c5fe6f659b72fa37b3770428f770e9 Pizza Tomate et Fromage - pizza tomate fromage - - - 111 - - - KCA#0962f5517452bf8b32ecb09f5f3166da Pizza aux Fruits de Mer - pizza au fruit de mer - - - 0 - - - CIQ#d9baa96a97f96e931fba42a44879122e ---------------------------------------------------- ==================================== Prompt ============================================= Convert this natural language query : """J'ai mange une pizza, combien de cals?""" into an array in JSON of consumed foods and beverages. Provide a solution without explanation. Use only the ontology described in this RDF model: """ @prefix food: . @prefix rdfs: . @prefix xsd: . @prefix owl: . @prefix prov: . food: a owl:Ontology ; rdfs:comment "Definition of the food archetype"@en . food:name a owl:DatatypeProperty; rdfs:label "name"@en; rdfs:comment "Food or drink identifier, the name should not contain information related to quantity or container (like glass...). The cooking mode is not in the name. Keep the same language"@en; rdfs:range xsd:string. food:quantity a owl:DatatypeProperty ; rdfs:label "quantity"@en; rdfs:comment "The quantity of food or drink that is or was consumed. Quantity examples in french: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en; rdfs:range xsd:string. food:cookingMethod a owl:DatatypeProperty ; rdfs:label "cooking method"@en; rdfs:comment "The cooking method of food. Keep the same language"@en; rdfs:range xsd:string. food:type a owl:DatatypeProperty ; rdfs:label "type of food"@en; rdfs:comment "Identify the type of food."@en; rdfs:range xsd:string. food:food a food:type ; rdfs:label "food" . food:beverage a food:type ; rdfs:label "beverage" . food:timeOfTheDay a owl:DatatypeProperty ; rdfs:label "time of the day"@en; rdfs:comment "Time of the day when food or drink was consumed."@en; rdfs:range xsd:string. food:breakfast a food:timeOfTheDay ; rdfs:label "breakfast" . food:lunch a food:timeOfTheDay ; rdfs:label "lunch" . food:snacking a food:timeOfTheDay ; rdfs:label "snacking" . food:dinner a food:timeOfTheDay ; rdfs:label "dinner" . food:brand a owl:DatatypeProperty ; rdfs:label "Brand"@en; rdfs:comment "Food or beverage brand. The restaurants are not brand. When the 'brand' is not specified and, the food or beverage is very well-known (like 'Coca-Cola'), provide the brand name in 'brand', otherwise set 'brand' to ''."@en; rdfs:range xsd:string. food:company a owl:DatatypeProperty ; rdfs:label "Company"@en; rdfs:comment "Product company."@en; rdfs:range xsd:string. food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range xsd:string. food:intent a food:event ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:event ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:event ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. """ ========================================================================================= ------------------------------ LLM Raw response ----------------------------- ```json [ { "food:name": "pizza", "food:quantity": "une", "food:event": "declaration" } ] ``` ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ ```json [ { "food:name": "pizza", "food:quantity": "une", "food:event": "declaration" } ] ``` ------------------------------------------------------ ------------------------ After simplification ------------------------ [ { "food:name": "pizza", "food:quantity": "une", "food:event": "declaration" }] ---------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': [{'food:name': 'pizza', 'food:quantity': 'une', 'food:event': 'declaration'}], 'cost': 0.0} -------------------------------------------------------------------------------- ----------- result to be analyzed ----------- {'name': 'pizza', 'quantity': 'une', 'event': 'declaration'} First try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% pizza %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL) ------------- Found solution (max 20) -------------- Pizza - pizza - - - 10599 - - - CIQ#733e507c20c6036da06902e2929056db Pizza - pizza - - - 0 - - - KCA#733e507c20c6036da06902e2929056db Pizza - pizza - sauce garniture pour - - 0 - - - CIQ#a275181c086396e0bec873fcc94008cb Pizza Kebab - pizza kebab - - - 6 - - - CIQ#6bbe41be8630f033bfe294b94bbf8d0c Pizza Moyenne - pizza moyenne - - - 38 - - - KCA#9bdfcad1de65c2ebcc7384d0aa3fa55f Pizza au Thon - pizza thon - - - 16 - - - CIQ#5f444b59309014aeab27095b6eb2d95b Pizza Fromage - pizza fromage - - - 0 - - - KCA#5175d910a3bb5ffe553ada3ee1d50309 Pizza au Poulet - pizza poulet - - - 0 - - - CIQ#33e0a5ea4366eeb0aad919629cf8f008 Pizza au Saumon - pizza saumon - - - 0 - - - CIQ#531c0deee226a1ed25c6ad7e9344ecef Pizza 4 Fromages - pizza fromage - - - 2361 - - - CIQ#5175d910a3bb5ffe553ada3ee1d50309 Pizza 'Spéciale' - pizza speciale - - - 146 - - - KCA#a6f6dd5434366be39fec21c560e1457e Pizza à la Poêle - pizza poele - - - 64 - - - KCA#2cd730363965f0d5363b216aaaa75f26 Pizza Boulangerie - pizza boulangerie - - - 318 - - - KCA#291611656924ce924ca7d5200705c55e Pizza à la Viande - pizza viande - type bolognaise - - 0 - - - CIQ#b17f77e6924678e84c353cde4ec8bdc4 Pizza aux Lardons - pizza au lardon - oignons et fromage - - 0 - - - CIQ#2ff2fb0af20f513208206f7883b4b537 Pizzas Végétariennes - pizza vegetarienne - - - 566 - - - KCA#9f884aabd1a0211b685859e3d93bb8c8 Pizza Jambon Fromage - pizza jambon fromage - - - 405 - - - CIQ#a5c5fe6f659b72fa37b3770428f770e9 Pizza Jambon Fromage - pizza jambon fromage - - - 0 - - - KCA#a5c5fe6f659b72fa37b3770428f770e9 Pizza Tomate et Fromage - pizza tomate fromage - - - 111 - - - KCA#0962f5517452bf8b32ecb09f5f3166da Pizza aux Fruits de Mer - pizza au fruit de mer - - - 0 - - - CIQ#d9baa96a97f96e931fba42a44879122e ---------------------------------------------------- PIZ.w200.p2 ERROR with converion of PIZ.w200.p2 ==================================== Prompt ============================================= Here is all known information: For "Pizza", here are the nutrition values: name: Pizza GTIN: none brand: none calorie: 233.0Kcal per 100g salt: 1.27g per 100g sugar: 2.93g per 100g NutriScore: none EcoScore: none allergens: en:gluten allergen traces: none data source: Ciqual Answer in less than 50 words to this question with a short explanation if needed: "J'ai mange une pizza, combien de cals?" " + "Mention the data source in the response if it exists. The answer must be in the same language than the question ========================================================================================= ------------------------------ LLM Raw response ----------------------------- Une pizza contient 233,0 Kcal pour 100g. La quantité de calories dépend du poids de la pizza consommée. Source: Ciqual. ----------------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': 'Une pizza contient 233,0 Kcal pour 100g. La quantité de calories dépend du poids de la pizza consommée. Source: Ciqual.', 'cost': 0.0} -------------------------------------------------------------------------------- --------------------------------- final result ----------------------------------- {'prompt': "J'ai mange une pizza, combien de cals?", 'intents': ['Identify food consumption or declaration', 'Answer a nutrition question'], 'model': 'gpt-4-0125-preview', 'solutions': {'nutrition': [{'name': 'Pizza', 'normName': ' pizza ', 'comment': '', 'normComment': '', 'rank': 10599, 'id': 'CIQ#733e507c20c6036da06902e2929056db', 'quantity': 'une', 'quantityLem': '1', 'pack': ['PIZ.w200.p2'], 'type': '', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': '', 'event': 'declaration', 'serving': 'PIZ-100', 'posiNormName': 0}], 'activity': [], 'response': {'type': 'text', 'data': 'Une pizza contient 233,0 Kcal pour 100g. La quantité de calories dépend du poids de la pizza consommée. Source: Ciqual.'}}, 'cputime': 11.363526105880737} ---------------------------------------------------------------------------------- LLM CPU Time: 11.363526105880737