Input path: /home/debian/html/nutritwin/output_llm/664aed5c711da/input.json
Output path: /home/debian/html/nutritwin/output_llm/664aed5c711da/output.json
Input text: Ce matin j'ai mangé un Danone
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user: Ce matin j'ai mangé un Danone
==================================================================================================================================
==================================== Prompt =============================================
Identify in this list of intents: ["Identify food and beverage consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Ce matin j'ai mangé un Danone###.
Format the result in JSON format: {"intents": []}.
=========================================================================================
------------------------------ LLM Raw response -----------------------------
{"intents": ["Identify food and beverage consumption or declaration"]}
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
{"intents": ["Identify food and beverage consumption or declaration"]}
------------------------------------------------------
ERROR: wrong object representation:
{'intents': ['Identify food and beverage consumption or declaration']}
------------------------ After simplification ------------------------
{
"intents": [
"Identify food and beverage consumption or declaration"
]
}
----------------------------------------------------------------------
==================================== Prompt =============================================
Convert this natural language query : """Ce matin j'ai mangé un Danone""" into an array of JSON.
Ignore what it is not connected to nutrition, beverage or food.
Provide a solution without explanation.
Use the following ontology and only this ontology described in this Turtle/RDF model:
"""
@prefix food: .
@prefix rdfs: .
@prefix xsd: .
@prefix owl: .
@prefix prov: .
food: a owl:Ontology ;
rdfs:comment "Definition of the food archetype"@en .
food:name a owl:DatatypeProperty;
rdfs:label "name"@en;
rdfs:comment "Food or beverage identifier, the name should not contain information related to quantity or container (like glass...)."@en;
rdfs:comment "Ignore food or beverage when it is not consumed in the past, now or in the future."@en;
rdfs:comment "The cooking mode is not in the name. The name is only in french."@en;
rdfs:range xsd:string.
food:quantity a owl:DatatypeProperty ;
rdfs:label "quantity"@en;
rdfs:comment "The quantity of food or drink that is or was consumed. Quantity is only in french. Here are examples: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en;
rdfs:range xsd:string.
food:cookingMethod a owl:DatatypeProperty ;
rdfs:label "cooking method"@en;
rdfs:comment "The cooking method of food. The cooking method is in french."@en;
rdfs:range xsd:string.
food:type a owl:DatatypeProperty ;
rdfs:label "type of food"@en;
rdfs:comment "Identify the type of food."@en;
rdfs:range xsd:string.
food:food a food:type ;
rdfs:label "food" .
food:beverage a food:type ;
rdfs:label "beverage" .
food:timeOfTheDay a owl:DatatypeProperty ;
rdfs:label "time of the day"@en;
rdfs:comment "Time of the day when food or drink was consumed."@en;
rdfs:range xsd:string.
food:breakfast a food:timeOfTheDay ;
rdfs:label "breakfast" .
food:lunch a food:timeOfTheDay ;
rdfs:label "lunch" .
food:snacking a food:timeOfTheDay ;
rdfs:label "snacking" .
food:dinner a food:timeOfTheDay ;
rdfs:label "dinner" .
food:brand a owl:DatatypeProperty ;
rdfs:label "Brand"@en;
rdfs:comment "Food or beverage brand. The restaurants are not brand."@en;
rdfs:comment "When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."@en;
rdfs:range xsd:string.
food:company a owl:DatatypeProperty ;
rdfs:label "Company"@en;
rdfs:comment "Product company."@en;
rdfs:range xsd:string.
food:enumEvent a rdfs:Class .
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
"""
Here is an example of result:
[
{
"name": "blanquette de veau",
"quantity": "un plat",
"cookingMethod": "mijot\u00e9",
"timeOfTheDay": "lunch",
"company": "Leclerc",
"type": "food",
"event": "declaration"
},
{
"name": "eau",
"brand": "Evian",
"company": "Danone",
"timeOfTheDay": "breakfast",
"quantity": "un verre",
"type": "beverage",
"event": "intent"
}
]
=========================================================================================
------------------------------ LLM Raw response -----------------------------
[
{
"name": "yaourt",
"quantity": "un",
"timeOfTheDay": "breakfast",
"brand": "Danone",
"type": "food",
"event": "declaration"
}
]
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
[
{
"name": "yaourt",
"quantity": "un",
"timeOfTheDay": "breakfast",
"brand": "Danone",
"type": "food",
"event": "declaration"
}
]
------------------------------------------------------
------------------------ After simplification ------------------------
[
{
"name": "yaourt",
"quantity": "un",
"timeOfTheDay": "breakfast",
"brand": "Danone",
"type": "food",
"event": "declaration"
}
]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'yaourt', 'quantity': 'un', 'timeOfTheDay': 'breakfast', 'brand': 'Danone', 'type': 'food', 'event': 'declaration'}], 'cost': 0.10074}
--------------------------------------------------------------------------------
----------- result to be analyzed -----------
{'name': 'yaourt', 'quantity': 'un', 'timeOfTheDay': 'breakfast', 'brand': 'Danone', 'type': 'food', 'event': 'declaration'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% yaourt %' AND V_NormTrademark LIKE '%danone%'
------------- Found solution (max 20) --------------
Yaourt - yaourt - - Danone - 8 - 13561390 - 13561390 - OFF#d05c7bad1833108d7aac87bb2be2ae6f
Yaourt - yaourt - - Danone - 0 - 3033491215353 - 13561390 - OFF#a44bf4719bfc97599207df830244621c
Yaourt - yaourt - - Danone - 0 - 5410146417061 - 13561390 - OFF#5022f1e2b789f0f6aa44416baa0d7560
Yaourt - yaourt - - Danone - 0 - 5410146420597 - 13561390 - OFF#d7b8d211568f869d3261da4d29401ab5
Yaourt - yaourt - - Danone - 0 - 3330261041205 - 13561390 - OFF#b6e99f227eff5773c1c5fdbe53fef3b5
Yaourt - yaourt - - Danone - 0 - 3330261030506 - 13561390 - OFF#3eeb8a1eb3478b34843adaadf4d4ce85
Yaourt - yaourt - - Danone - 0 - 3330261030100 - 13561390 - OFF#5acbbfe23f23953da5c23e9d829e30f0
Yaourt - yaourt - - Danone - 0 - 5601050034950 - 13561390 - OFF#a3db60fd82209c7039e34013035e385c
Yaourt - yaourt - - Danone - 0 - 5410146418273 - 13561390 - OFF#0b585358bc172d2e308131ce70de0c80
Yaourt - yaourt - - Danone - 0 - 3330261020705 - 13561390 - OFF#a99b39ad9eae80cbe801b143f7ed6ed7
Yaourt - yaourt - - Danone - 0 - 3033491235740 - 13561390 - OFF#9ffb5713e93620a28232bb9bd618ede4
Yaourt - yaourt - - Danone - 0 - 5900643038277 - 13561390 - OFF#3cdb76ac70adc6ed2b917faac77b6df1
Yaourt - yaourt - - Danone - 0 - 6130646003128 - 13561390 - OFF#fa8b036dd2e4dbcef32bf006113bbb09
Yaourt - yaourt - - Danone - 0 - 3033491208386 - 13561390 - OFF#76b5f9b99f87c98bc01411a30d232cd2
Yaourt - yaourt - - Danone - 0 - 3033491920318 - 13561390 - OFF#6b57474329ecc35fe6828a24ba092e26
Yaourt - yaourt - - Danone - 0 - 5410146417177 - 13561390 - OFF#b057f3bd83ed8d2669ea7b29518413b2
Yaourt 1919 - yaourt 1919 - - Danone - 0 - 3033491274138 - 3033491274138 - OFF#fb90197ae57fba65a4b56a8383d202e1
Yaourt Mixé - yaourt mixe - - Danone - 0 - 3516465000150 - 3516465000150 - OFF#23d5e5351852b6bcb2f3a50550fd5f6a
Yaourt 1919 - yaourt 1919 - - Danone - 0 - 3033491274152 - 3033491274138 - OFF#afefd2ea79d712eed1f700b4da863456
Yaourt Sucre - yaourt sucre - - Danone - 0 - 3033491208362 - 3033491208362 - OFF#6ffb8bf6afbb736de38ce4510a619ce0
----------------------------------------------------
--------------------------------- final result -----------------------------------
{'prompt': "Ce matin j'ai mangé un Danone", 'model': 'mistral-large-2411', 'imagePath': '', 'intents': ['Identify food and beverage consumption or declaration'], 'solutions': {'nutrition': [{'name': 'Yaourt', 'normName': ' yaourt ', 'comment': '', 'normComment': '', 'rank': 8, 'id': 'OFF#d05c7bad1833108d7aac87bb2be2ae6f', 'quantity': 'un', 'quantityLem': '1', 'pack': ['YA2.w125', 'YA9.w125'], 'type': 'food', 'gtin': '13561390', 'gtinRef': '13561390', 'brand': 'Danone', 'time': 'breakfast', 'event': 'declaration', 'serving': 'YA2-100', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 2.429426431655884}
----------------------------------------------------------------------------------
LLM CPU Time: 2.429426431655884