Input path: /home/debian/html/nutritwin/output_llm/6712b1deacae8/input.json
Output path: /home/debian/html/nutritwin/output_llm/6712b1deacae8/output.json
Input text: Soupe.
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user: Soupe.
==================================================================================================================================
==================================== Prompt =============================================
Identify in this list of intents: ["Identify food consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Soupe.###.
Format the result in JSON format: {intents: []}.
=========================================================================================
------------------------------ LLM Raw response -----------------------------
```json
{
"intents": ["Identify food consumption or declaration"]
}
```
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
```json
{
"intents": ["Identify food consumption or declaration"]
}
```
------------------------------------------------------
------------------------ After simplification ------------------------
{ "intents": ["Identify food consumption or declaration"]}
----------------------------------------------------------------------
==================================== Prompt =============================================
Convert this natural language query : """Soupe.""" into an array in JSON of consumed foods and beverages.
Provide a solution without explanation.
Use only the ontology described in this Turtle/RDF model:
"""
@prefix food: .
@prefix rdfs: .
@prefix xsd: .
@prefix owl: .
@prefix prov: .
food: a owl:Ontology ;
rdfs:comment "Definition of the food archetype"@en .
food:name a owl:DatatypeProperty;
rdfs:label "name"@en;
rdfs:comment "Food or beverage identifier, the name should not contain information related to quantity or container (like glass...)."@en;
rdfs:comment "Ignore food or beverage when it is not consumed in the past, now or in the future."@en;
rdfs:comment "The cooking mode is not in the name. Keep the same language"@en;
rdfs:range xsd:string.
food:quantity a owl:DatatypeProperty ;
rdfs:label "quantity"@en;
rdfs:comment "The quantity of food or drink that is or was consumed. Quantity examples in french: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en;
rdfs:range xsd:string.
food:cookingMethod a owl:DatatypeProperty ;
rdfs:label "cooking method"@en;
rdfs:comment "The cooking method of food. Keep the same language"@en;
rdfs:range xsd:string.
food:type a owl:DatatypeProperty ;
rdfs:label "type of food"@en;
rdfs:comment "Identify the type of food."@en;
rdfs:range xsd:string.
food:food a food:type ;
rdfs:label "food" .
food:beverage a food:type ;
rdfs:label "beverage" .
food:timeOfTheDay a owl:DatatypeProperty ;
rdfs:label "time of the day"@en;
rdfs:comment "Time of the day when food or drink was consumed."@en;
rdfs:range xsd:string.
food:breakfast a food:timeOfTheDay ;
rdfs:label "breakfast" .
food:lunch a food:timeOfTheDay ;
rdfs:label "lunch" .
food:snacking a food:timeOfTheDay ;
rdfs:label "snacking" .
food:dinner a food:timeOfTheDay ;
rdfs:label "dinner" .
food:brand a owl:DatatypeProperty ;
rdfs:label "Brand"@en;
rdfs:comment "Food or beverage brand. The restaurants are not brand."@en;
rdfs:comment "When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."@en;
rdfs:range xsd:string.
food:company a owl:DatatypeProperty ;
rdfs:label "Company"@en;
rdfs:comment "Product company."@en;
rdfs:range xsd:string.
food:enumEvent a rdfs:Class .
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
"""
=========================================================================================
------------------------------ LLM Raw response -----------------------------
```json
[
{
"name": "Soupe",
"type": "food",
"event": "declaration"
}
]
```
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
```json
[
{
"name": "Soupe",
"type": "food",
"event": "declaration"
}
]
```
------------------------------------------------------
------------------------ After simplification ------------------------
[ { "name": "Soupe", "type": "food", "event": "declaration" }]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'Soupe', 'type': 'food', 'event': 'declaration'}], 'cost': 0.0}
--------------------------------------------------------------------------------
----------- result to be analyzed -----------
{'name': 'Soupe', 'type': 'food', 'event': 'declaration'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% soupe %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Soupe - soupe - - - 13 - - - CIQ#d38558470062ac5e3bcfe5f6ae1b1877
Soupe Miso - soupe miso - déshydratée reconstituée - - 0 - - - CIQ#2864246d65444d2b8a7a213e08a1941f
Soupe au Pain - soupe pain - au pain - - 0 - - - KCA#198b9e8411c619859bf84e5b437f1332
Soupe à l'Ail - soupe ail - à l'ail - - 0 - - - KCA#c2752c55ad4098d77298722e98556eee
Soupe au Choux - soupe chou - au choux - - 0 - - - KCA#ee07fe588be75e8402283dda604ca5b9
Soupe au Pistou - soupe pistou - - - 164 - - - CIQ#3b039f5168b1e012dc7014d41b27e748
Soupe au Cantal - soupe cantal - au cantal - - 0 - - - KCA#97c80ba38a0d393aa16941feefc06699
Soupe Asiatique - soupe asiatique - avec pâtes - - 0 - - - CIQ#3806f198e18b33f8b28e7f20df30cac8
Soupe Pékinoise - soupe pekinoise - soupe pékinoise - - 0 - - - KCA#c098a7deb4c974077b34ed3bfaf9b1a1
Soupe au Pistou - soupe pistou - déshydratée reconstituée - - 0 - - - CIQ#50825ca4c4736b6d52c653d53f4d157a
Soupe Marocaine - soupe marocaine - déshydratée reconstituée - - 0 - - - CIQ#c1031e4175e40d52afa20c8d2577b1ef
Soupe Asiatique - soupe asiatique - avec pâtes, déshydratée reconstituée - - 0 - - - CIQ#a40183d749005d95ac204f5d631d2529
Soupe à l'Oignon - soupe oignon - - - 403 - - - CIQ#b1ff7640f95dd2cde33e15b9cda8687a
Soupe au Cresson - soupe cresson - - - 354 - - - CIQ#5622adddc0a602676f23aa772b5f9138
Soupe Minestrone - soupe minestrone - - - 353 - - - CIQ#d6a95d8bda925efc36695e9b831c08b2
Soupe au Potiron - soupe potiron - - - 145 - - - CIQ#6f75550105dd45c4009ada47f18dd0cd
Soupe à la Bière - soupe biere - la bière - - 0 - - - KCA#5d823e0c912390b7753ac7c6af959cf0
Soupe de Légumes - soupe de legume - de légumes - - 0 - - - KCA#ffb1f50ec43d9ad3f79c5e0b99990d09
Soupe aux Moules - soupe au moule - aux moules - - 0 - - - KCA#3fe2a6465efacd53cf3f591a07aa0b3f
Soupe à l'Oignon - soupe oignon - déshydratée reconstituée - - 0 - - - CIQ#8185849a63717db6199dc328db03c3ea
----------------------------------------------------
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
--------------------------------- final result -----------------------------------
{'prompt': 'Soupe.', 'intents': ['Identify food consumption or declaration'], 'model': 'gpt-4o-2024-05-13', 'solutions': {'nutrition': [{'name': 'Soupe', 'normName': ' soupe ', 'comment': '', 'normComment': '', 'rank': 13, 'id': 'CIQ#d38558470062ac5e3bcfe5f6ae1b1877', 'quantity': '', 'quantityLem': '', 'pack': ['ACR', 'BOL'], 'type': 'food', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': '', 'event': 'declaration', 'serving': '', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 1.5137286186218262}
----------------------------------------------------------------------------------
LLM CPU Time: 1.5137286186218262