Input path: /home/debian/html/nutritwin/output_llm/67141c0ceec5c/input.json Output path: /home/debian/html/nutritwin/output_llm/67141c0ceec5c/output.json Input text: Un fondant à la praline. DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: Un fondant à la praline. ================================================================================================================================== ==================================== Prompt ============================================= Identify in this list of intents: ["Identify food consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Un fondant à la praline.###. Format the result in JSON format: {intents: []}. ========================================================================================= ------------------------------ LLM Raw response ----------------------------- ```json { "intents": ["Identify food consumption or declaration"] } ``` ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ ```json { "intents": ["Identify food consumption or declaration"] } ``` ------------------------------------------------------ ------------------------ After simplification ------------------------ { "intents": ["Identify food consumption or declaration"]} ---------------------------------------------------------------------- ==================================== Prompt ============================================= Convert this natural language query : """Un fondant à la praline.""" into an array in JSON of consumed foods and beverages. Provide a solution without explanation. Use only the ontology described in this Turtle/RDF model: """ @prefix food: . @prefix rdfs: . @prefix xsd: . @prefix owl: . @prefix prov: . food: a owl:Ontology ; rdfs:comment "Definition of the food archetype"@en . food:name a owl:DatatypeProperty; rdfs:label "name"@en; rdfs:comment "Food or beverage identifier, the name should not contain information related to quantity or container (like glass...)."@en; rdfs:comment "Ignore food or beverage when it is not consumed in the past, now or in the future."@en; rdfs:comment "The cooking mode is not in the name. Keep the same language"@en; rdfs:range xsd:string. food:quantity a owl:DatatypeProperty ; rdfs:label "quantity"@en; rdfs:comment "The quantity of food or drink that is or was consumed. Quantity examples in french: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en; rdfs:range xsd:string. food:cookingMethod a owl:DatatypeProperty ; rdfs:label "cooking method"@en; rdfs:comment "The cooking method of food. Keep the same language"@en; rdfs:range xsd:string. food:type a owl:DatatypeProperty ; rdfs:label "type of food"@en; rdfs:comment "Identify the type of food."@en; rdfs:range xsd:string. food:food a food:type ; rdfs:label "food" . food:beverage a food:type ; rdfs:label "beverage" . food:timeOfTheDay a owl:DatatypeProperty ; rdfs:label "time of the day"@en; rdfs:comment "Time of the day when food or drink was consumed."@en; rdfs:range xsd:string. food:breakfast a food:timeOfTheDay ; rdfs:label "breakfast" . food:lunch a food:timeOfTheDay ; rdfs:label "lunch" . food:snacking a food:timeOfTheDay ; rdfs:label "snacking" . food:dinner a food:timeOfTheDay ; rdfs:label "dinner" . food:brand a owl:DatatypeProperty ; rdfs:label "Brand"@en; rdfs:comment "Food or beverage brand. The restaurants are not brand."@en; rdfs:comment "When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."@en; rdfs:range xsd:string. food:company a owl:DatatypeProperty ; rdfs:label "Company"@en; rdfs:comment "Product company."@en; rdfs:range xsd:string. food:enumEvent a rdfs:Class . food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range food:enumEvent. food:intent a food:enumEvent ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:enumEvent ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:enumEvent ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. """ ========================================================================================= ------------------------------ LLM Raw response ----------------------------- ```json [ { "name": "fondant à la praline", "type": "food", "event": "declaration" } ] ``` ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ ```json [ { "name": "fondant à la praline", "type": "food", "event": "declaration" } ] ``` ------------------------------------------------------ ------------------------ After simplification ------------------------ [ { "name": "fondant à la praline", "type": "food", "event": "declaration" }] ---------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': [{'name': 'fondant à la praline', 'type': 'food', 'event': 'declaration'}], 'cost': 0.0} -------------------------------------------------------------------------------- ----------- result to be analyzed ----------- {'name': 'fondant à la praline', 'type': 'food', 'event': 'declaration'} First try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% fondant praline %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL) Second try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormAggr LIKE '% fondant praline %' AND V_NormTrademark LIKE '%%' ------------- Found solution (max 20) -------------- Maxi Plaisir Lait Praliné Fondant - maxi plaisir lait praline fondant - - Lindt - 0 - 3046920019798 - 3046920019798 - OFF#5f2bc27b2c3c6c83c410cf936b9678d3 Super Cookies Coeur Fondant au Praliné et Amandes Grillées - super cookie coeur fondant praline amande grillee - - Danone - 0 - 3760122961739 - 3760122961739 - OFF#f06960c9d22f48b89932b2098c7ac9e1 Super Cookies Coeur Fondant au Praliné et Amandes Grillées - super cookie coeur fondant praline amande grillee - - Danone - 0 - 3760122961777 - 3760122961739 - OFF#cf89386cd6c56f638889593d4de3ee8e Mini Oeufs Assortiment Lait Fondant Praliné Noir - mini oeuf assortiment lait fondant praline noir - - Lindt - 0 - 8003340098487 - 8003340098487 - OFF#f1ea94e698aafd175c6794fa6629825c ---------------------------------------------------- ERROR: Wrong quantity: '' ERROR: no solution for picto in the first solution --------------------------------- final result ----------------------------------- {'prompt': 'Un fondant à la praline.', 'intents': ['Identify food consumption or declaration'], 'model': 'gpt-4o-2024-05-13', 'solutions': {'nutrition': [{'name': 'Maxi Plaisir Lait Praliné Fondant', 'normName': ' maxi plaisir lait praline fondant ', 'comment': '', 'normComment': '', 'rank': 0, 'id': 'OFF#5f2bc27b2c3c6c83c410cf936b9678d3', 'quantity': '', 'quantityLem': '', 'pack': ['CHO.w8'], 'type': 'food', 'gtin': '3046920019798', 'gtinRef': '3046920019798', 'brand': 'Lindt', 'time': '', 'event': 'declaration', 'serving': '', 'posiNormName': -1}], 'activity': [], 'response': {}}, 'cputime': 2.1116034984588623} ---------------------------------------------------------------------------------- LLM CPU Time: 2.1116034984588623