Input path: /home/debian/html/nutritwin/output_llm/6718db98ac3ac/input.json Output path: /home/debian/html/nutritwin/output_llm/6718db98ac3ac/output.json Input text: Trois. DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: Trois. ================================================================================================================================== ==================================== Prompt ============================================= Identify in this list of intents: ["Identify food consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Trois.###. Format the result in JSON format: {intents: []}. ========================================================================================= ------------------------------ LLM Raw response ----------------------------- ```json { "intents": ["Other intent"] } ``` ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ ```json { "intents": ["Other intent"] } ``` ------------------------------------------------------ ------------------------ After simplification ------------------------ { "intents": ["Other intent"]} ---------------------------------------------------------------------- --------------------------------- final result ----------------------------------- {'prompt': 'Trois.', 'intents': ['Other intent'], 'model': 'gpt-4o-2024-05-13', 'solutions': {'nutrition': [], 'activity': [], 'response': {}}, 'cputime': 0.4581155776977539} ---------------------------------------------------------------------------------- LLM CPU Time: 0.4581155776977539