Input path: /home/debian/html/nutritwin/output_llm/671a32745a613/input.json
Output path: /home/debian/html/nutritwin/output_llm/671a32745a613/output.json
Input text: Carottes cuites.
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user: Carottes cuites.
==================================================================================================================================
==================================== Prompt =============================================
Identify in this list of intents: ["Identify food consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Carottes cuites.###.
Format the result in JSON format: {intents: []}.
=========================================================================================
------------------------------ LLM Raw response -----------------------------
```json
{
"intents": ["Identify food consumption or declaration"]
}
```
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
```json
{
"intents": ["Identify food consumption or declaration"]
}
```
------------------------------------------------------
------------------------ After simplification ------------------------
{ "intents": ["Identify food consumption or declaration"]}
----------------------------------------------------------------------
==================================== Prompt =============================================
Convert this natural language query : """Carottes cuites.""" into an array in JSON of consumed foods and beverages.
Provide a solution without explanation.
Use only the ontology described in this Turtle/RDF model:
"""
@prefix food: .
@prefix rdfs: .
@prefix xsd: .
@prefix owl: .
@prefix prov: .
food: a owl:Ontology ;
rdfs:comment "Definition of the food archetype"@en .
food:name a owl:DatatypeProperty;
rdfs:label "name"@en;
rdfs:comment "Food or beverage identifier, the name should not contain information related to quantity or container (like glass...)."@en;
rdfs:comment "Ignore food or beverage when it is not consumed in the past, now or in the future."@en;
rdfs:comment "The cooking mode is not in the name. Keep the same language"@en;
rdfs:range xsd:string.
food:quantity a owl:DatatypeProperty ;
rdfs:label "quantity"@en;
rdfs:comment "The quantity of food or drink that is or was consumed. Quantity examples in french: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en;
rdfs:range xsd:string.
food:cookingMethod a owl:DatatypeProperty ;
rdfs:label "cooking method"@en;
rdfs:comment "The cooking method of food. Keep the same language"@en;
rdfs:range xsd:string.
food:type a owl:DatatypeProperty ;
rdfs:label "type of food"@en;
rdfs:comment "Identify the type of food."@en;
rdfs:range xsd:string.
food:food a food:type ;
rdfs:label "food" .
food:beverage a food:type ;
rdfs:label "beverage" .
food:timeOfTheDay a owl:DatatypeProperty ;
rdfs:label "time of the day"@en;
rdfs:comment "Time of the day when food or drink was consumed."@en;
rdfs:range xsd:string.
food:breakfast a food:timeOfTheDay ;
rdfs:label "breakfast" .
food:lunch a food:timeOfTheDay ;
rdfs:label "lunch" .
food:snacking a food:timeOfTheDay ;
rdfs:label "snacking" .
food:dinner a food:timeOfTheDay ;
rdfs:label "dinner" .
food:brand a owl:DatatypeProperty ;
rdfs:label "Brand"@en;
rdfs:comment "Food or beverage brand. The restaurants are not brand."@en;
rdfs:comment "When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."@en;
rdfs:range xsd:string.
food:company a owl:DatatypeProperty ;
rdfs:label "Company"@en;
rdfs:comment "Product company."@en;
rdfs:range xsd:string.
food:enumEvent a rdfs:Class .
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
"""
=========================================================================================
------------------------------ LLM Raw response -----------------------------
```json
[
{
"name": "Carottes",
"cooking method": "cuites",
"type of food": "food",
"event": "declaration"
}
]
```
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
```json
[
{
"name": "Carottes",
"cooking method": "cuites",
"type of food": "food",
"event": "declaration"
}
]
```
------------------------------------------------------
------------------------ After simplification ------------------------
[ { "name": "Carottes", "cooking method": "cuites", "type of food": "food", "event": "declaration" }]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'Carottes', 'cooking method': 'cuites', 'type of food': 'food', 'event': 'declaration'}], 'cost': 0.0}
--------------------------------------------------------------------------------
----------- result to be analyzed -----------
{'name': 'Carottes', 'cooking method': 'cuites', 'type of food': 'food', 'event': 'declaration'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% carotte %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Carotte - carotte - - - 0 - - - CIQ#c25a5ac9d76a886e8d048234775511cc
Carotte - carotte - crue - - 1 - - - CIQ#a7874f4f33fb2dbc15824a2e825563a1
Carotte - carotte - purée - - 0 - - - CIQ#9c5ebd1506b8bd79c185157a907e5bdb
Carotte - carotte - surgelée - - 45 - - - CIQ#e3009eb73fdd922e2253b10af6bfa6d9
Carotte - carotte - égouttée - - 0 - - - CIQ#949bbc6db954a7c778a54ae6468f63c7
Carotte - carotte - à la vapeur - - 0 - - - CIQ#1de710714c0199745f6629010e1f4b1b
Carotte - carotte - purée cuisinée à la crème - - 0 - - - CIQ#32559c9674d3bad3a4340c9eae6501ad
Carotte - carotte - bouillie/cuite à l'eau, fondante - - 0 - - - CIQ#82c4ed5b7b54f49bfca9f849a0c03b48
Carotte - carotte - bouillie/cuite à l'eau, croquante - - 0 - - - CIQ#5cd51d236a0a8e7c95564dd5f01f45d9
Carotte (jus) - carotte - - - 12544 - - - KCA#c25a5ac9d76a886e8d048234775511cc
Carottes Vichy - carotte vichy - - - 2919 - - - KCA#c3d70e0599b5f9ed8f8c5855114d2920
Carottes Rapées - carotte rapee - - - 11844 - - - KCA#5bab4982631307ce183c664c08e55546
Carottes Rapées - carotte rapee - à l'Orange - - 32 - - - KCA#73ce70cd5efc3dc60888616fadfd35af
Carottes Surgelées - carotte surgelee - - - 0 - - - KCA#13cc5a1b7bf3fb616eae70ea61518915
Carottes à l'Étuvée - carotte etuvee - - - 1807 - - - KCA#49cbbe74a431d4e41b8704d1fe93ec8e
Carottes Râpées Nature - carotte rapee nature - - - 1074 - - - KCA#08362e84e9b96863e50aef4a65b95bf4
Carottes à la Fermière - carotte fermiere - - - 180 - - - KCA#84ed7da5773a27fe3972f5bfb0dbc423
Carotte Râpée à la Vinaigrette - carotte rapee vinaigrette - - - 1371 - - - KCA#550aab930f59f61f6d4b015c1f19f2a7
Soupe à la Carotte - soupe carotte - - - 4 - - - CIQ#caea7c027f921522fe3dfa8ae19f528d
Flan aux Carottes - flan au carotte - - - 195 - - - KCA#aa67df5d93c0fe5f69f4a1cbc7b479be
----------------------------------------------------
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
--------------------------------- final result -----------------------------------
{'prompt': 'Carottes cuites.', 'intents': ['Identify food consumption or declaration'], 'model': 'gpt-4o-2024-05-13', 'solutions': {'nutrition': [{'name': 'Carotte', 'normName': ' carotte ', 'comment': '', 'normComment': '', 'rank': 0, 'id': 'CIQ#c25a5ac9d76a886e8d048234775511cc', 'quantity': '', 'quantityLem': '', 'pack': ['CAR.w125'], 'type': '', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': '', 'event': 'declaration', 'serving': '', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 1.3126373291015625}
----------------------------------------------------------------------------------
LLM CPU Time: 1.3126373291015625