Input path: /home/debian/html/nutritwin/output_llm/67446854dac5c/input.json Output path: /home/debian/html/nutritwin/output_llm/67446854dac5c/output.json Input text: DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: ================================================================================================================================== ########################################### # For image extraction, GPT4 is used # ########################################### ==================================== Prompt ============================================= In the image, identify all the foods and the beverages. For each of them, identify the "name", the "type", the "quantity", if it exists, the "brand" and the "cooking" mode. "Portions", like "tranche", are quantities. Ignore what it is not connected to nutrition, beverage or food. When the "brand" is not specified and the product is very well-known (like "Coca-Cola"), provide the brand name in "brand", otherwise set "brand" to "". Identify what "type" of food. Identify the "company" to which the "brand" belongs. Estimate the "weight" in grams or centiliters for each result. Identify the time is the current time, map it on the closest case: "petit-déjeuner", "déjeuner", "grignotage" or "dîner". When the "name" has synonyms, use the most common name, example: "yaourt" is more common than "yogourt". Format the result for each ingredient of food & beverage in french in JSON in an array of tuples {"name":, "quantity":, "weight":, "cooking":, "brand":, "company":, "type":, "time":, "event": "declaration"}. ========================================================================================= Image recognition.... ------------------------------ LLM Raw response ----------------------------- ```json [ { "name": "sablé", "quantity": "1 pièce", "weight": "", "cooking": "", "brand": "Wernli", "company": "HUG AG", "type": "biscuiterie", "time": "", "event": "declaration" } ] ``` ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ ```json [ { "name": "sablé", "quantity": "1 pièce", "weight": "", "cooking": "", "brand": "Wernli", "company": "HUG AG", "type": "biscuiterie", "time": "", "event": "declaration" } ] ``` ------------------------------------------------------ ------------------------ After simplification ------------------------ [ { "name": "sablé", "quantity": "1 pièce", "weight": "", "cooking": "", "brand": "Wernli", "company": "HUG AG", "type": "biscuiterie", "time": "", "event": "declaration" }] ---------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': [{'name': 'sablé', 'quantity': '1 pièce', 'weight': '', 'cooking': '', 'brand': 'Wernli', 'company': 'HUG AG', 'type': 'biscuiterie', 'time': '', 'event': 'declaration'}], 'cost': 0.0} -------------------------------------------------------------------------------- ----------- result to be analyzed ----------- {'name': 'sablé', 'quantity': '1 pièce', 'weight': '', 'cooking': '', 'brand': 'Wernli', 'company': 'HUG AG', 'type': 'biscuiterie', 'time': '', 'event': 'declaration'} First try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% sable %' AND V_NormTrademark LIKE '%wernli%' Second try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormAggr LIKE '% sable %' AND V_NormTrademark LIKE '%wernli%' Third try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormAggr LIKE '% sable %' AND V_NormAggr LIKE '% wernli %' AND V_NormAggr LIKE '% hug ag %' ------------------------------------------- ------ERROR-------------------------------- No solution for query: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormAggr LIKE '% sable %' AND V_NormAggr LIKE '% wernli %' AND V_NormAggr LIKE '% hug ag %' ------------------------------------------- ------------------------------------------- --------------------------------- final result ----------------------------------- {'prompt': '', 'intents': ['Identify food in an image'], 'model': 'gpt-4o-2024-05-13', 'solutions': {'nutrition': [], 'activity': [], 'response': {}}, 'cputime': 3.8535208702087402} ---------------------------------------------------------------------------------- LLM CPU Time: 3.8535208702087402