Input path: /home/debian/html/nutritwin/output_llm/675346d0673c3/input.json Output path: /home/debian/html/nutritwin/output_llm/675346d0673c3/output.json Input text: Ce matin j'ai mangé une clémentine. DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: Ce matin j'ai mangé une clémentine. ================================================================================================================================== ==================================== Prompt ============================================= Identify in this list of intents: ["Identify food and beverage consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Ce matin j'ai mangé une clémentine.###. Format the result in JSON format: {"intents": []}. ========================================================================================= ------------------------------ LLM Raw response ----------------------------- {"intents": ["Identify food and beverage consumption or declaration"]} ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ {"intents": ["Identify food and beverage consumption or declaration"]} ------------------------------------------------------ ERROR: wrong object representation: {'intents': ['Identify food and beverage consumption or declaration']} ------------------------ After simplification ------------------------ { "intents": [ "Identify food and beverage consumption or declaration" ] } ---------------------------------------------------------------------- ==================================== Prompt ============================================= Convert this natural language query : """Ce matin j'ai mangé une clémentine.""" into an array of JSON. Ignore what it is not connected to nutrition, beverage or food. Provide a solution without explanation. Use the following ontology and only this ontology described in this Turtle/RDF model: """ @prefix food: . @prefix rdfs: . @prefix xsd: . @prefix owl: . @prefix prov: . food: a owl:Ontology ; rdfs:comment "Definition of the food archetype"@en . food:name a owl:DatatypeProperty; rdfs:label "name"@en; rdfs:comment "Food or beverage identifier, the name should not contain information related to quantity or container (like glass...)."@en; rdfs:comment "Ignore food or beverage when it is not consumed in the past, now or in the future."@en; rdfs:comment "The cooking mode is not in the name. The name is only in french."@en; rdfs:range xsd:string. food:quantity a owl:DatatypeProperty ; rdfs:label "quantity"@en; rdfs:comment "The quantity of food or drink that is or was consumed. Quantity is only in french. Here are examples: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en; rdfs:range xsd:string. food:cookingMethod a owl:DatatypeProperty ; rdfs:label "cooking method"@en; rdfs:comment "The cooking method of food. The cooking method is in french."@en; rdfs:range xsd:string. food:type a owl:DatatypeProperty ; rdfs:label "type of food"@en; rdfs:comment "Identify the type of food."@en; rdfs:range xsd:string. food:food a food:type ; rdfs:label "food" . food:beverage a food:type ; rdfs:label "beverage" . food:timeOfTheDay a owl:DatatypeProperty ; rdfs:label "time of the day"@en; rdfs:comment "Time of the day when food or drink was consumed."@en; rdfs:range xsd:string. food:breakfast a food:timeOfTheDay ; rdfs:label "breakfast" . food:lunch a food:timeOfTheDay ; rdfs:label "lunch" . food:snacking a food:timeOfTheDay ; rdfs:label "snacking" . food:dinner a food:timeOfTheDay ; rdfs:label "dinner" . food:brand a owl:DatatypeProperty ; rdfs:label "Brand"@en; rdfs:comment "Food or beverage brand. The restaurants are not brand."@en; rdfs:comment "When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."@en; rdfs:range xsd:string. food:company a owl:DatatypeProperty ; rdfs:label "Company"@en; rdfs:comment "Product company."@en; rdfs:range xsd:string. food:enumEvent a rdfs:Class . food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range food:enumEvent. food:intent a food:enumEvent ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:enumEvent ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:enumEvent ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range food:enumEvent. food:intent a food:enumEvent ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:enumEvent ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:enumEvent ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. """ Here is an example of result: [ { "name": "blanquette de veau", "quantity": "un plat", "cookingMethod": "mijot\u00e9", "timeOfTheDay": "lunch", "company": "Leclerc", "type": "food", "event": "declaration" }, { "name": "eau", "brand": "Evian", "company": "Danone", "timeOfTheDay": "breakfast", "quantity": "un verre", "type": "beverage", "event": "intent" } ] ========================================================================================= ------------------------------ LLM Raw response ----------------------------- [ { "name": "clémentine", "quantity": "une", "timeOfTheDay": "breakfast", "type": "food", "event": "declaration" } ] ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ [ { "name": "clémentine", "quantity": "une", "timeOfTheDay": "breakfast", "type": "food", "event": "declaration" } ] ------------------------------------------------------ ------------------------ After simplification ------------------------ [ { "name": "cl\u00e9mentine", "quantity": "une", "timeOfTheDay": "breakfast", "type": "food", "event": "declaration" } ] ---------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': [{'name': 'clémentine', 'quantity': 'une', 'timeOfTheDay': 'breakfast', 'type': 'food', 'event': 'declaration'}], 'cost': 0.09983999999999998} -------------------------------------------------------------------------------- ----------- result to be analyzed ----------- {'name': 'clémentine', 'quantity': 'une', 'timeOfTheDay': 'breakfast', 'type': 'food', 'event': 'declaration'} First try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% clementine %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL) ------------- Found solution (max 20) -------------- Clémentine - clementine - - - 27873 - - - KCA#befbec8822f41ad26accbbf670dfbb35 Clémentine ou Mandarine - clementine ou mandarine - pulpe, crue - - 0 - - - CIQ#cd98fccd6ecf9634e7e38c0e8b714c58 ---------------------------------------------------- --------------------------------- final result ----------------------------------- {'prompt': "Ce matin j'ai mangé une clémentine.", 'model': 'mistral-large-2411', 'imagePath': '', 'intents': ['Identify food and beverage consumption or declaration'], 'solutions': {'nutrition': [{'name': 'Clémentine', 'normName': ' clementine ', 'comment': '', 'normComment': '', 'rank': 27873, 'id': 'KCA#befbec8822f41ad26accbbf670dfbb35', 'quantity': 'une', 'quantityLem': '1', 'pack': ['ORA.w100'], 'type': 'food', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': 'breakfast', 'event': 'declaration', 'serving': 'ORA-100', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 1.8466033935546875} ---------------------------------------------------------------------------------- LLM CPU Time: 1.8466033935546875