Input path: /home/debian/html/nutritwin/output_llm/6755f9f7040b2/input.json
Output path: /home/debian/html/nutritwin/output_llm/6755f9f7040b2/output.json
Input text: Noisettes.
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user: Noisettes.
==================================================================================================================================
==================================== Prompt =============================================
Identify in this list of intents: ["Identify food and beverage consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Noisettes.###.
Format the result in JSON format: {"intents": []}.
=========================================================================================
------------------------------ LLM Raw response -----------------------------
{"intents": ["Identify food and beverage consumption or declaration"]}
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
{"intents": ["Identify food and beverage consumption or declaration"]}
------------------------------------------------------
ERROR: wrong object representation:
{'intents': ['Identify food and beverage consumption or declaration']}
------------------------ After simplification ------------------------
{
"intents": [
"Identify food and beverage consumption or declaration"
]
}
----------------------------------------------------------------------
==================================== Prompt =============================================
Convert this natural language query : """Noisettes.""" into an array of JSON.
Ignore what it is not connected to nutrition, beverage or food.
Provide a solution without explanation.
Use the following ontology and only this ontology described in this Turtle/RDF model:
"""
@prefix food: .
@prefix rdfs: .
@prefix xsd: .
@prefix owl: .
@prefix prov: .
food: a owl:Ontology ;
rdfs:comment "Definition of the food archetype"@en .
food:name a owl:DatatypeProperty;
rdfs:label "name"@en;
rdfs:comment "Food or beverage identifier, the name should not contain information related to quantity or container (like glass...)."@en;
rdfs:comment "Ignore food or beverage when it is not consumed in the past, now or in the future."@en;
rdfs:comment "The cooking mode is not in the name. The name is only in french."@en;
rdfs:range xsd:string.
food:quantity a owl:DatatypeProperty ;
rdfs:label "quantity"@en;
rdfs:comment "The quantity of food or drink that is or was consumed. Quantity is only in french. Here are examples: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en;
rdfs:range xsd:string.
food:cookingMethod a owl:DatatypeProperty ;
rdfs:label "cooking method"@en;
rdfs:comment "The cooking method of food. The cooking method is in french."@en;
rdfs:range xsd:string.
food:type a owl:DatatypeProperty ;
rdfs:label "type of food"@en;
rdfs:comment "Identify the type of food."@en;
rdfs:range xsd:string.
food:food a food:type ;
rdfs:label "food" .
food:beverage a food:type ;
rdfs:label "beverage" .
food:timeOfTheDay a owl:DatatypeProperty ;
rdfs:label "time of the day"@en;
rdfs:comment "Time of the day when food or drink was consumed."@en;
rdfs:range xsd:string.
food:breakfast a food:timeOfTheDay ;
rdfs:label "breakfast" .
food:lunch a food:timeOfTheDay ;
rdfs:label "lunch" .
food:snacking a food:timeOfTheDay ;
rdfs:label "snacking" .
food:dinner a food:timeOfTheDay ;
rdfs:label "dinner" .
food:brand a owl:DatatypeProperty ;
rdfs:label "Brand"@en;
rdfs:comment "Food or beverage brand. The restaurants are not brand."@en;
rdfs:comment "When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."@en;
rdfs:range xsd:string.
food:company a owl:DatatypeProperty ;
rdfs:label "Company"@en;
rdfs:comment "Product company."@en;
rdfs:range xsd:string.
food:enumEvent a rdfs:Class .
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
"""
Here is an example of result:
[
{
"name": "blanquette de veau",
"quantity": "un plat",
"cookingMethod": "mijot\u00e9",
"timeOfTheDay": "lunch",
"company": "Leclerc",
"type": "food",
"event": "declaration"
},
{
"name": "eau",
"brand": "Evian",
"company": "Danone",
"timeOfTheDay": "breakfast",
"quantity": "un verre",
"type": "beverage",
"event": "intent"
}
]
=========================================================================================
------------------------------ LLM Raw response -----------------------------
[
{
"name": "noisettes",
"type": "food"
}
]
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
[
{
"name": "noisettes",
"type": "food"
}
]
------------------------------------------------------
------------------------ After simplification ------------------------
[
{
"name": "noisettes",
"type": "food"
}
]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'noisettes', 'type': 'food'}], 'cost': 0.09558}
--------------------------------------------------------------------------------
----------- result to be analyzed -----------
{'name': 'noisettes', 'type': 'food'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% noisette %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Café Noisette - cafe noisette - - - 971 - - - KCA#0fc9cdc7bb8a494e3e53719b2bee98c8
Huile de Noisette - huile de noisette - - - 0 - - - CIQ#24bed2b2c48a227f44a6872ed2618569
Boisson au Soja Noisette - boisson soja noisette - - - 20 - - - KCA#87e793ca44d2d523db4b70ace49d3e51
Chocolat Noir Noisettes - chocolat noir noisette - - - 1875 - - - KCA#49fc5b19d990e357f20d1160e7d62f54
Pomme de Terre Noisette - pomme de terre noisette - surgelée - - 157 - - - CIQ#bce127ab00d79ace0ff66e3709eafd22
Pomme de Terre Noisette - pomme de terre noisette - surgelée, crue - - 0 - - - CIQ#391f5b673a701be591447c173adaf18f
Pomme de Terre Noisettes Surgelées - pomme de terre noisette surgelee - - - 0 - - - KCA#d43857a6fbd01bb1731fde84cf29cfa5
Cervelles au Beurre Noisette - cervelle beurre noisette - - - 4 - - - KCA#1bac1429347e303fdba3fd4cb394a2fb
Bouchées Chocolat-noisettes - bouchee chocolat noisette - - - 50 - - - KCA#bf1495123a9a4c627909d042f0dc26ce
Parfaits Chocolat Noir Noisettes - parfait chocolat noir noisette - - - 18 - - - KCA#205552965fb668730b8519c91500d669
Pétales de Blé Avec Noix, Noisettes ou Amandes - petale de ble avec noix noisette ou amande - - - 7 - - - KCA#3a4b816b40d2ca2fcf1525d8761ea6cf
Saucisson Sec aux Noix Et/ou Noisettes - saucisson sec au noix et/ou noisette - - - 0 - - - CIQ#7ca1c35bcbabd2cf0891661c40e8f457
Barre Céréalière aux Amandes ou Noisettes - barre cerealiere au amande ou noisette - - - 0 - - - CIQ#5f4a2840e6a66958acf93b120dc45c13
Gaufrette Fourrée, Chocolat, Vanille ou Noisette - gaufrette fourree chocolat vanille ou noisette - - - 159 - - - KCA#75baba95a2a821d1233cfdd709037734
Céréales pour Petit Déjeuner Fourrées au Chocolat ou Chocolat-noisettes - cereale pour petit dejeuner fourree chocolat ou chocolat noisette - - - 3 - - - CIQ#b2f581ebe4c1d7c626f9b82500c40f2d
Céréales pour Petit Déjeuner Fourrées au Chocolat ou Chocolat-noisettes - cereale pour petit dejeuner fourree chocolat ou chocolat noisette - enrichies en vitamines et minéraux - - 0 - - - CIQ#deb33f8fd6e7d92ffd7460e84d331dc8
----------------------------------------------------
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
--------------------------------- final result -----------------------------------
{'prompt': 'Noisettes.', 'model': 'mistral-large-2411', 'imagePath': '', 'intents': ['Identify food and beverage consumption or declaration'], 'solutions': {'nutrition': [{'name': 'Café Noisette', 'normName': ' cafe noisette ', 'comment': '', 'normComment': '', 'rank': 971, 'id': 'KCA#0fc9cdc7bb8a494e3e53719b2bee98c8', 'quantity': '', 'quantityLem': '', 'pack': ['TA2', 'TAS', 'TAC', 'TA3', 'MUG', 'BOL'], 'type': 'food', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': '', 'event': 'unknown', 'serving': '', 'posiNormName': 5}], 'activity': [], 'response': {}}, 'cputime': 1.758216381072998}
----------------------------------------------------------------------------------
LLM CPU Time: 1.758216381072998