Input path: /home/debian/html/nutritwin/output_llm/6758c91b0c88f/input.json
Output path: /home/debian/html/nutritwin/output_llm/6758c91b0c88f/output.json
Input text: J'ai mangé un cassoulet aux morilles.
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user: J'ai mangé un cassoulet aux morilles.
==================================================================================================================================
==================================== Prompt =============================================
Identify in this list of intents: ["Identify food and beverage consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###J'ai mangé un cassoulet aux morilles.###.
Format the result in JSON format: {"intents": []}.
=========================================================================================
------------------------------ LLM Raw response -----------------------------
{"intents": ["Identify food and beverage consumption or declaration"]}
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
{"intents": ["Identify food and beverage consumption or declaration"]}
------------------------------------------------------
ERROR: wrong object representation:
{'intents': ['Identify food and beverage consumption or declaration']}
------------------------ After simplification ------------------------
{
"intents": [
"Identify food and beverage consumption or declaration"
]
}
----------------------------------------------------------------------
==================================== Prompt =============================================
Convert this natural language query : """J'ai mangé un cassoulet aux morilles.""" into an array of JSON.
Ignore what it is not connected to nutrition, beverage or food.
Provide a solution without explanation.
Use the following ontology and only this ontology described in this Turtle/RDF model:
"""
@prefix food: .
@prefix rdfs: .
@prefix xsd: .
@prefix owl: .
@prefix prov: .
food: a owl:Ontology ;
rdfs:comment "Definition of the food archetype"@en .
food:name a owl:DatatypeProperty;
rdfs:label "name"@en;
rdfs:comment """Food or beverage identifier, the name should not contain information related to quantity or container (like glass...).
Ignore food or beverage when it is not consumed in the past, now or in the future.
The cooking mode is not in the name. The name is only in french."""@en;
rdfs:range xsd:string.
food:quantity a owl:DatatypeProperty ;
rdfs:label "quantity"@en;
rdfs:comment "The quantity of food or drink that is or was consumed. Quantity is only in french. Here are examples: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en;
rdfs:range xsd:string.
food:cookingMethod a owl:DatatypeProperty ;
rdfs:label "cooking method"@en;
rdfs:comment "The cooking method of food. The cooking method is in french."@en;
rdfs:range xsd:string.
food:type a owl:DatatypeProperty ;
rdfs:label "type of food"@en;
rdfs:comment "Identify the type of food."@en;
rdfs:range xsd:string.
food:food a food:type ;
rdfs:label "food" .
food:beverage a food:type ;
rdfs:label "beverage" .
food:timeOfTheDay a owl:DatatypeProperty ;
rdfs:label "time of the day"@en;
rdfs:comment "Time of the day when food or drink was consumed."@en;
rdfs:range xsd:string.
food:breakfast a food:timeOfTheDay ;
rdfs:label "breakfast" .
food:lunch a food:timeOfTheDay ;
rdfs:label "lunch" .
food:snacking a food:timeOfTheDay ;
rdfs:label "snacking" .
food:dinner a food:timeOfTheDay ;
rdfs:label "dinner" .
food:brand a owl:DatatypeProperty ;
rdfs:label "Brand"@en;
rdfs:comment """Food or beverage brand. The restaurants are not brand.
When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."""@en;
rdfs:range xsd:string.
food:company a owl:DatatypeProperty ;
rdfs:label "Company"@en;
rdfs:comment "Product company."@en;
rdfs:range xsd:string.
food:enumEvent a rdfs:Class .
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
"""
Here is an example of result:
[
{
"name": "blanquette de veau",
"quantity": "un plat",
"cookingMethod": "mijot\u00e9",
"timeOfTheDay": "lunch",
"company": "Leclerc",
"type": "food",
"event": "declaration"
},
{
"name": "eau",
"brand": "Evian",
"company": "Danone",
"timeOfTheDay": "breakfast",
"quantity": "un verre",
"type": "beverage",
"event": "intent"
}
]
=========================================================================================
------------------------------ LLM Raw response -----------------------------
[
{
"name": "cassoulet",
"quantity": "un",
"type": "food",
"event": "declaration"
},
{
"name": "morilles",
"type": "food",
"event": "declaration"
}
]
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
[
{
"name": "cassoulet",
"quantity": "un",
"type": "food",
"event": "declaration"
},
{
"name": "morilles",
"type": "food",
"event": "declaration"
}
]
------------------------------------------------------
------------------------ After simplification ------------------------
[
{
"name": "cassoulet",
"quantity": "un",
"type": "food",
"event": "declaration"
},
{
"name": "morilles",
"type": "food",
"event": "declaration"
}
]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'cassoulet', 'quantity': 'un', 'type': 'food', 'event': 'declaration'}, {'name': 'morilles', 'type': 'food', 'event': 'declaration'}], 'cost': 0.10049999999999999}
--------------------------------------------------------------------------------
----------- result to be analyzed -----------
{'name': 'cassoulet', 'quantity': 'un', 'type': 'food', 'event': 'declaration'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% cassoulet %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Cassoulet - cassoulet - - - 29 - - - CIQ#e01947bd461f77b6f8ebff86f85f2d43
Cassoulet au Porc - cassoulet porc - - - 0 - - - CIQ#999832e2c7b188a4ec70f4c435447f27
Cassoulet Conserve - cassoulet conserve - - - 125 - - - KCA#97c7c138f43ab7bf29671497edc17019
Cassoulet au Canard ou Oie - cassoulet canard ou oie - - - 0 - - - CIQ#3a83a9d330dbcf828fb95ddc6c498fad
Lapin en Cassoulet - lapin en cassoulet - - - 2 - - - KCA#e75003e6a15bc8bba0b9c48bc33044d9
----------------------------------------------------
----------- result to be analyzed -----------
{'name': 'morilles', 'type': 'food', 'event': 'declaration'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% morille %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Morilles - morille - - - 43 - - - KCA#25372f2b930e14c8e17e05405eef7994
Morilles à la Tomate - morille tomate - - - 0 - - - KCA#fd5ea7c2ad91d73146a02cb444b60f8e
----------------------------------------------------
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
--------------------------------- final result -----------------------------------
{'prompt': "J'ai mangé un cassoulet aux morilles.", 'model': 'mistral-large-2411', 'imagePath': '', 'intents': ['Identify food and beverage consumption or declaration'], 'solutions': {'nutrition': [{'name': 'Cassoulet', 'normName': ' cassoulet ', 'comment': '', 'normComment': '', 'rank': 29, 'id': 'CIQ#e01947bd461f77b6f8ebff86f85f2d43', 'quantity': 'un', 'quantityLem': '1', 'pack': ['APL.w250'], 'type': 'food', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': '', 'event': 'declaration', 'serving': 'APL-100', 'posiNormName': 0}, {'name': 'Morilles', 'normName': ' morille ', 'comment': '', 'normComment': '', 'rank': 43, 'id': 'KCA#25372f2b930e14c8e17e05405eef7994', 'quantity': '', 'quantityLem': '', 'pack': ['APL.w100'], 'type': 'food', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': '', 'event': 'declaration', 'serving': '', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 4.391484975814819}
----------------------------------------------------------------------------------
LLM CPU Time: 4.391484975814819