Input path: /home/debian/html/nutritwin/output_llm/660edb453c56a/input.json
Output path: /home/debian/html/nutritwin/output_llm/660edb453c56a/output.json
Input text: Parmesan
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user: Parmesan
==================================================================================================================================
==================================== Prompt =============================================
Identify in this list of intents: ["Capture the user food consumption", "Capture the user physical activity", "Other intent"], the intents of the prompt: ###Parmesan###.
Format the result in JSON format: {intents: []}.
=========================================================================================
------------------------------ LLM Raw response -----------------------------
{
"intents": ["Capture the user food consumption"]
}
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
{
"intents": ["Capture the user food consumption"]
}
------------------------------------------------------
------------------------ After simplification ------------------------
{"intents": ["Capture the user food consumption"]}
----------------------------------------------------------------------
==================================== Prompt =============================================
I need to identify food information from sentences.
Analyze the following french sentence: "Parmesan".
I want to identify for the food or beverage: the name, the type, the quantity for each ingredient and, if it exists, identify the brand, the cooking mode and the company name.
Containers, like "canette" or "verre", are quantities and not ingredients or food product.
"Portions", like "tranche", are quantities.
"Quantity" is in french.
"Company" is the company of the brand.
"Quignon" is a quantity.
Ignore what it is not connected to nutrition, beverage or food.
Music and is not nutrition.
Extract how the product is consumed.
In the name, ignore the level of cooking mode.
When brand is not specified and the product is very well-known (like "Coca-Cola"), provide the brand name in "brand", otherwise set "brand" to "".
Ignore the actions.
The restaurants are not brand.
Identify what type of food.
Ignore food with a negative verb, ex "Je n'ai pas pris de viande".
Do not extract ingredients for product with a brand.
If the food or beverage consumption is in the past, the event is a "declaration", for example: "J'ai mangé du pain", the event is a declaration.
If the food or beverage consumption will be in the future or even soon, the event is an "intent", for example: "Je vais manger du pain", the event is an intent.
Otherwise the event is unknown.
Map the event of eating on ["intent", "declaration", "unknown"].
Identify the time of day when the foods were eaten and map it on "petit-déjeuner", "déjeuner", "grignotage" or "dîner".
Format the result in french in JSON in an array of tuples {"name":, "quantity":, "cooking":, "brand":, "company":, "type":, "time":, "event":}.
=========================================================================================
------------------------------ LLM Raw response -----------------------------
Based on your instructions, I've analyzed the sentence "Parmesan". However, as it's a single word, the information that can be extracted is limited. Here's the JSON formatted response:
```json
[
{
"name": "Parmesan",
"quantity": "",
"cooking": "",
"brand": "",
"company": "",
"type": "fromage",
"time": "unknown",
"event": "unknown"
}
]
```
Explanation:
- Name: Parmesan is a type of cheese, so it's the name of the food item.
- Quantity: No quantity is specified in the sentence.
- Cooking: No cooking method is specified in the sentence.
- Brand: No brand is specified in the sentence.
- Company: No company is specified in the sentence.
- Type: Parmesan is a type of cheese, so the type is "fromage" (cheese in French).
- Time: The time of consumption is not specified in the sentence.
- Event: The event (intent, declaration, unknown) cannot be determined from the sentence as it's a single word and does not indicate any action or time.
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
Based on your instructions, I've analyzed the sentence "Parmesan". However, as it's a single word, the information that can be extracted is limited. Here's the JSON formatted response:
```json
[
{
"name": "Parmesan",
"quantity": "",
"cooking": "",
"brand": "",
"company": "",
"type": "fromage",
"time": "unknown",
"event": "unknown"
}
]
```
Explanation:
- Name: Parmesan is a type of cheese, so it's the name of the food item.
- Quantity: No quantity is specified in the sentence.
- Cooking: No cooking method is specified in the sentence.
- Brand: No brand is specified in the sentence.
- Company: No company is specified in the sentence.
- Type: Parmesan is a type of cheese, so the type is "fromage" (cheese in French).
- Time: The time of consumption is not specified in the sentence.
- Event: The event (intent, declaration, unknown) cannot be determined from the sentence as it's a single word and does not indicate any action or time.
------------------------------------------------------
------------------------ After simplification ------------------------
[ { "name": "Parmesan", "quantity": "", "cooking": "", "brand": "", "company": "", "type": "fromage", "time": "unknown", "event": "unknown" }]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'Parmesan', 'quantity': '', 'cooking': '', 'brand': '', 'company': '', 'type': 'fromage', 'time': 'unknown', 'event': 'unknown'}], 'cost': 0.06366}
--------------------------------------------------------------------------------
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% parmesan %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Parmesan - parmesan - - - 0 - - - KCA#fae0e5fbea5d01848c4a1a151cfeffc3
Soupe au Parmesan - soupe parmesan - au parmesan - - 0 - - - KCA#e1ecae3e9155e0db4a179db8f1e6e457
Asperges au Parmesan - asperge parmesan - - - 67 - - - KCA#a127db60c903b37982601b9e36b76706
Torsades au Parmesan - torsade parmesan - et aux graines de Pavot - - 15 - - - KCA#3e830ae45227519c360729235abd088a
Croquettes de Pomme de Terre au Parmesan - croquette de pomme de terre parmesan - - - 16 - - - KCA#1a8ca7a877d4a38b488d84f4422b572d
----------------------------------------------------
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
--------------------------------- final result -----------------------------------
{'prompt': 'Parmesan', 'intents': ['Capture the user food consumption'], 'model': 'mistral-large-latest', 'solutions': {'nutrition': [{'name': 'Parmesan', 'normName': ' parmesan ', 'comment': '', 'normComment': '', 'rank': 0, 'id': 'KCA#fae0e5fbea5d01848c4a1a151cfeffc3', 'quantity': '', 'quantityLem': '', 'pack': ['CSS.w20', 'GRU.w20'], 'type': 'fromage', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': 'unknown', 'event': 'unknown', 'serving': '', 'posiNormName': 0}], 'activity': []}, 'cputime': 7.660597324371338}
----------------------------------------------------------------------------------
LLM CPU Time: 7.660597324371338