Input path: /home/debian/html/nutritwin/output_llm/662a3a7d99014/input.json Output path: /home/debian/html/nutritwin/output_llm/662a3a7d99014/output.json Input text: J'ai mangé une salade de riz DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: J'ai mangé une salade de riz ================================================================================================================================== ==================================== Prompt ============================================= Identify in this list of intents: ["Capture the user food consumption", "Capture the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###J'ai mangé une salade de riz###. Format the result in JSON format: {intents: []}. ========================================================================================= ------------------------------ LLM Raw response ----------------------------- { "intents": ["Capture the user food consumption"] } ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ { "intents": ["Capture the user food consumption"] } ------------------------------------------------------ ------------------------ After simplification ------------------------ {"intents": ["Capture the user food consumption"]} ---------------------------------------------------------------------- ==================================== Prompt ============================================= I need to identify food information from sentences. Analyze the following french sentence: "J'ai mangé une salade de riz". I want to identify for the food or beverage: the name, the type, the quantity for each ingredient and, if it exists, identify the brand, the cooking mode and the company name. Containers, like "canette" or "verre", are quantities and not ingredients or food product. "Portions", like "tranche", are quantities. "Quantity" is in french. "Company" is the company of the brand. "Quignon" is a quantity. Ignore what it is not connected to nutrition, beverage or food. Music and is not nutrition. Extract how the product is consumed. The level of cooking mode is not in the name. There is no quantity in the name, ex: the name for "une pomme" is "pomme". When brand is not specified and the product is very well-known (like "Coca-Cola"), provide the brand name in "brand", otherwise set "brand" to "". Ignore the actions. The restaurants are not brand. Identify what type of food. Ignore food with a negative verb, ex "Je n'ai pas pris de viande". Do not extract ingredients for product with a brand. If the food or beverage consumption is in the past, the event is a "declaration", for example: "J'ai mangé du pain", the event is a declaration. If the food or beverage consumption will be in the future or even soon, the event is an "intent", for example: "Je vais manger du pain", the event is an intent. Otherwise the event is unknown. Map the event of eating on ["intent", "declaration", "unknown"]. Identify the time of day when the foods were eaten and map it on "petit-déjeuner", "déjeuner", "grignotage" or "dîner". Format the result in french in JSON in an array of tuples {"name":, "quantity":, "cooking":, "brand":, "company":, "type":, "time":, "event":}. ========================================================================================= ------------------------------ LLM Raw response ----------------------------- Based on your instructions, here's the analysis of the sentence "J'ai mangé une salade de riz". The food item mentioned is "salade de riz" which translates to "rice salad" in English. Since no brand, company, or cooking method is specified, those fields will be left blank. The quantity is "une" (one), and the type is "salade" (salad). The event is a "declaration" as the eating is in the past tense. The time of day is not specified in the sentence, so it will be left blank. Here's the formatted result in French: ```json [ { "name": "salade de riz", "quantity": "une", "cooking": "", "brand": "", "company": "", "type": "salade", "time": "", "event": "declaration" } ] ``` ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ Based on your instructions, here's the analysis of the sentence "J'ai mangé une salade de riz". The food item mentioned is "salade de riz" which translates to "rice salad" in English. Since no brand, company, or cooking method is specified, those fields will be left blank. The quantity is "une" (one), and the type is "salade" (salad). The event is a "declaration" as the eating is in the past tense. The time of day is not specified in the sentence, so it will be left blank. Here's the formatted result in French: ```json [ { "name": "salade de riz", "quantity": "une", "cooking": "", "brand": "", "company": "", "type": "salade", "time": "", "event": "declaration" } ] ``` ------------------------------------------------------ ------------------------ After simplification ------------------------ [ { "name": "salade de riz", "quantity": "une", "cooking": "", "brand": "", "company": "", "type": "salade", "time": "", "event": "declaration" }] ---------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': [{'name': 'salade de riz', 'quantity': 'une', 'cooking': '', 'brand': '', 'company': '', 'type': 'salade', 'time': '', 'event': 'declaration'}], 'cost': 0.05814} -------------------------------------------------------------------------------- First try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% salade de riz %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL) ------------- Found solution (max 20) -------------- Salade de Riz aux Moules - salade de riz au moule - - - 44 - - - KCA#f9957cdb565d14ac3d1e293e8bac29ef ---------------------------------------------------- --------------------------------- final result ----------------------------------- {'prompt': "J'ai mangé une salade de riz", 'intents': ['Capture the user food consumption'], 'model': 'mistral-large-latest', 'solutions': {'nutrition': [{'name': 'Salade de Riz aux Moules', 'normName': ' salade de riz au moule ', 'comment': '', 'normComment': '', 'rank': 44, 'id': 'KCA#f9957cdb565d14ac3d1e293e8bac29ef', 'quantity': 'une', 'quantityLem': '1', 'pack': ['SAL.w125'], 'type': 'salade', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': '', 'event': 'declaration', 'serving': 'SAL-100', 'posiNormName': 0}], 'activity': [], 'response': ''}, 'cputime': 9.65349292755127} ---------------------------------------------------------------------------------- LLM CPU Time: 9.65349292755127