Input path: /home/debian/html/nutritwin/output_llm/6638e4c202e2d/input.json Output path: /home/debian/html/nutritwin/output_llm/6638e4c202e2d/output.json Input text: Combien de calories dans un plat couscous de chez Picard DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: Combien de calories dans un plat couscous de chez Picard ================================================================================================================================== ==================================== Prompt ============================================= Identify in this list of intents: ["Identify food consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Combien de calories dans un plat couscous de chez Picard###. Format the result in JSON format: {intents: []}. ========================================================================================= ------------------------------ LLM Raw response ----------------------------- ```json { "intents": ["Answer a nutrition question"] } ``` ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ ```json { "intents": ["Answer a nutrition question"] } ``` ------------------------------------------------------ ------------------------ After simplification ------------------------ { "intents": ["Answer a nutrition question"]} ---------------------------------------------------------------------- ==================================== Prompt ============================================= Convert this natural language query : """Combien de calories dans un plat couscous de chez Picard""" into an array in JSON of consumed foods and beverages. Provide a solution without explanation. Use only the ontology described in this RDF model: """ @prefix food: . @prefix rdfs: . @prefix xsd: . @prefix owl: . @prefix prov: . food: a owl:Ontology ; rdfs:comment "Definition of the food archetype"@en . food:name a owl:DatatypeProperty; rdfs:label "name"@en; rdfs:comment "Food or drink identifier, the name should not contain information related to quantity or container (like glass...). The cooking mode is not in the name. Keep the same language"@en; rdfs:range xsd:string. food:quantity a owl:DatatypeProperty ; rdfs:label "quantity"@en; rdfs:comment "The quantity of food or drink that is or was consumed. Quantity examples in french: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en; rdfs:range xsd:string. food:cookingMethod a owl:DatatypeProperty ; rdfs:label "cooking method"@en; rdfs:comment "The cooking method of food. Keep the same language"@en; rdfs:range xsd:string. food:type a owl:DatatypeProperty ; rdfs:label "type of food"@en; rdfs:comment "Identify the type of food."@en; rdfs:range xsd:string. food:food a food:type ; rdfs:label "food" . food:beverage a food:type ; rdfs:label "beverage" . food:timeOfTheDay a owl:DatatypeProperty ; rdfs:label "time of the day"@en; rdfs:comment "Time of the day when food or drink was consumed."@en; rdfs:range xsd:string. food:breakfast a food:timeOfTheDay ; rdfs:label "breakfast" . food:lunch a food:timeOfTheDay ; rdfs:label "lunch" . food:snacking a food:timeOfTheDay ; rdfs:label "snacking" . food:dinner a food:timeOfTheDay ; rdfs:label "dinner" . food:brand a owl:DatatypeProperty ; rdfs:label "Brand"@en; rdfs:comment "Food or beverage brand. The restaurants are not brand. When the 'brand' is not specified and, the food or beverage is very well-known (like 'Coca-Cola'), provide the brand name in 'brand', otherwise set 'brand' to ''."@en; rdfs:range xsd:string. food:company a owl:DatatypeProperty ; rdfs:label "Company"@en; rdfs:comment "Product company."@en; rdfs:range xsd:string. food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range xsd:string. food:intent a food:event ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:event ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:event ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. """ ========================================================================================= ------------------------------ LLM Raw response ----------------------------- ```json [ { "food:name": "couscous", "food:quantity": "un plat", "food:brand": "Picard", "food:event": "declaration" } ] ``` ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ ```json [ { "food:name": "couscous", "food:quantity": "un plat", "food:brand": "Picard", "food:event": "declaration" } ] ``` ------------------------------------------------------ ------------------------ After simplification ------------------------ [ { "food:name": "couscous", "food:quantity": "un plat", "food:brand": "Picard", "food:event": "declaration" }] ---------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': [{'food:name': 'couscous', 'food:quantity': 'un plat', 'food:brand': 'Picard', 'food:event': 'declaration'}], 'cost': 0.0} -------------------------------------------------------------------------------- ----------- result to be analyzed ----------- {'name': 'couscous', 'quantity': 'un plat', 'brand': 'Picard', 'event': 'declaration'} First try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% couscou %' AND V_NormTrademark LIKE '%picard%' ------------- Found solution (max 20) -------------- Couscous - couscou - - Picard - 0 - 3270160860753 - 3270160860753 - OFF#8b7e171b8124e7f860189f765a6b4ea2 Couscous Royal - couscou royal - - Picard - 0 - 3270160864393 - 3270160864393 - OFF#27c2e7fb882dff234b3b95a4df5e4636 Couscous Royal - couscou royal - - Picard - 0 - 3270160864591 - 3270160864393 - OFF#eb37f0ae8370565f701088c26a87cfe0 Couscous Royal - couscou royal - - Picard - 0 - 3270160864409 - 3270160864393 - OFF#47310ccedfd03dd45940970f64377555 Couscous Surgelé - couscou surgele - - Picard - 0 - 3270160381630 - 3270160381630 - OFF#bb4cdf161b37537f4370e1d8b798e05c Couscous Tout Bon Tout Veggie - couscou tout bon tout veggie - - Picard - 0 - 3270160861842 - 3270160861842 - OFF#e3316e7124e19b00de23a55912bd6af8 Couscous Royal au Poulet Merguez et Agneau - couscou royal poulet merguez agneau - - Picard - 0 - 3270160290239 - 3270160290239 - OFF#db76e32a04cc89f481754119e22ad67f Couscous Royal au Poulet Agneau et Merguez - couscou royal poulet agneau merguez - - Picard - 0 - 3270160399802 - 3270160399802 - OFF#30d4db3972a6cf4aaa2e732453d5a098 Graine de Couscous Cuisinée - graine de couscou cuisinee - - Picard - 0 - 3270160751921 - 3270160751921 - OFF#fa5a9984365b1589ac7bac1fdd3c02d2 Légumes pour Couscous - legume pour couscou - - Picard - 0 - 3270160116355 - 3270160116355 - OFF#bffa8f91b6286fd3010ae4793e051cc1 ---------------------------------------------------- ERROR: no solution for picto in the first solution BA1.w400 ==================================== Prompt ============================================= Here is all known information: For "Couscous", here are the nutrition values: name: Couscous GTIN: 3270160860753 brand: Picard calorie: 122.0Kcal per 100g reference weight for a unity: 400g salt: 0.71g per 100g sugar: 0.0g per 100g NutriScore: A EcoScore: B allergens: en:celery,en:gluten,en:milk allergen traces: none data source: Open Food Facts Answer in less than 50 words to this question with a short explanation if needed: "Combien de calories dans un plat couscous de chez Picard" " + "Mention the data source in the response if it exists. The answer must be in the same language than the question ========================================================================================= ------------------------------ LLM Raw response ----------------------------- Dans un plat de couscous de chez Picard de 400g, il y a 488 calories (122.0Kcal par 100g). Source: Open Food Facts. ----------------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': 'Dans un plat de couscous de chez Picard de 400g, il y a 488 calories (122.0Kcal par 100g). Source: Open Food Facts.', 'cost': 0.0} -------------------------------------------------------------------------------- --------------------------------- final result ----------------------------------- {'prompt': 'Combien de calories dans un plat couscous de chez Picard', 'intents': ['Answer a nutrition question'], 'model': 'gpt-4-0125-preview', 'solutions': {'nutrition': [{'name': 'Couscous', 'normName': ' couscou ', 'comment': '', 'normComment': '', 'rank': 0, 'id': 'OFF#8b7e171b8124e7f860189f765a6b4ea2', 'quantity': 'un plat', 'quantityLem': '1 plat', 'pack': ['BA1.w400'], 'type': '', 'gtin': '3270160860753', 'gtinRef': '3270160860753', 'brand': 'Picard', 'time': '', 'event': 'declaration', 'serving': '', 'posiNormName': 0}], 'activity': [], 'response': {'type': 'text', 'data': 'Dans un plat de couscous de chez Picard de 400g, il y a 488 calories (122.0Kcal par 100g). Source: Open Food Facts.'}}, 'cputime': 8.259574890136719} ---------------------------------------------------------------------------------- LLM CPU Time: 8.259574890136719