Input path: /home/debian/html/nutritwin/output_llm/6641224f8376b/input.json Output path: /home/debian/html/nutritwin/output_llm/6641224f8376b/output.json Input text: Enregistrer DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: Enregistrer ================================================================================================================================== ==================================== Prompt ============================================= Identify in this list of intents: ["Identify food consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Enregistrer###. Format the result in JSON format: {intents: []}. ========================================================================================= ------------------------------ LLM Raw response ----------------------------- ```json {intents: ["Other intent"]} ``` ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ ```json {intents: ["Other intent"]} ``` ------------------------------------------------------ ------------------------ After simplification ------------------------ {intents: ["Other intent"]} ---------------------------------------------------------------------- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ERROR: impossible to parse [II]: ```json {intents: ["Other intent"]} ``` The extracted string is {intents: ["Other intent"]} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ --------------------------------- final result ----------------------------------- {'prompt': 'Enregistrer', 'intents': [], 'model': 'gpt-4-0125-preview', 'solutions': {'nutrition': [], 'activity': [], 'response': {}}, 'cputime': 0.9723036289215088} ---------------------------------------------------------------------------------- LLM CPU Time: 0.9723036289215088