Input path: /home/debian/html/nutritwin/output_llm/66a7cb3d42323/input.json
Output path: /home/debian/html/nutritwin/output_llm/66a7cb3d42323/output.json
Input text: J'ai mangé ce soir de la mozzarella avec du melon des tomates cerises et un peu de jambon cru
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user: J'ai mangé ce soir de la mozzarella avec du melon des tomates cerises et un peu de jambon cru
==================================================================================================================================
==================================== Prompt =============================================
Identify in this list of intents: ["Identify food consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###J'ai mangé ce soir de la mozzarella avec du melon des tomates cerises et un peu de jambon cru###.
Format the result in JSON format: {intents: []}.
=========================================================================================
------------------------------ LLM Raw response -----------------------------
```json
{
"intents": ["Identify food consumption or declaration"]
}
```
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
```json
{
"intents": ["Identify food consumption or declaration"]
}
```
------------------------------------------------------
------------------------ After simplification ------------------------
{ "intents": ["Identify food consumption or declaration"]}
----------------------------------------------------------------------
==================================== Prompt =============================================
Convert this natural language query : """J'ai mangé ce soir de la mozzarella avec du melon des tomates cerises et un peu de jambon cru""" into an array in JSON of consumed foods and beverages.
Provide a solution without explanation.
Use only the ontology described in this Turtle/RDF model:
"""
@prefix food: .
@prefix rdfs: .
@prefix xsd: .
@prefix owl: .
@prefix prov: .
food: a owl:Ontology ;
rdfs:comment "Definition of the food archetype"@en .
food:name a owl:DatatypeProperty;
rdfs:label "name"@en;
rdfs:comment "Food or drink identifier, the name should not contain information related to quantity or container (like glass...). The cooking mode is not in the name. When the brand is very well-known (ex: Activia, Coca-Cola), the name is equal to the brand. Keep the same language"@en;
rdfs:range xsd:string.
food:quantity a owl:DatatypeProperty ;
rdfs:label "quantity"@en;
rdfs:comment "The quantity of food or drink that is or was consumed. Quantity examples in french: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en;
rdfs:range xsd:string.
food:cookingMethod a owl:DatatypeProperty ;
rdfs:label "cooking method"@en;
rdfs:comment "The cooking method of food. Keep the same language"@en;
rdfs:range xsd:string.
food:type a owl:DatatypeProperty ;
rdfs:label "type of food"@en;
rdfs:comment "Identify the type of food."@en;
rdfs:range xsd:string.
food:food a food:type ;
rdfs:label "food" .
food:beverage a food:type ;
rdfs:label "beverage" .
food:timeOfTheDay a owl:DatatypeProperty ;
rdfs:label "time of the day"@en;
rdfs:comment "Time of the day when food or drink was consumed."@en;
rdfs:range xsd:string.
food:breakfast a food:timeOfTheDay ;
rdfs:label "breakfast" .
food:lunch a food:timeOfTheDay ;
rdfs:label "lunch" .
food:snacking a food:timeOfTheDay ;
rdfs:label "snacking" .
food:dinner a food:timeOfTheDay ;
rdfs:label "dinner" .
food:brand a owl:DatatypeProperty ;
rdfs:label "Brand"@en;
rdfs:comment "Food or beverage brand. The restaurants are not brand. When the 'brand' is not specified and, the food or beverage is very well-known (like 'Coca-Cola'), provide the brand name in 'brand', otherwise set 'brand' to ''."@en;
rdfs:range xsd:string.
food:company a owl:DatatypeProperty ;
rdfs:label "Company"@en;
rdfs:comment "Product company."@en;
rdfs:range xsd:string.
food:enumEvent a rdfs:Class .
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
"""
=========================================================================================
------------------------------ LLM Raw response -----------------------------
```json
[
{
"name": "mozzarella",
"type": "food",
"timeOfTheDay": "dinner",
"event": "declaration"
},
{
"name": "melon",
"type": "food",
"timeOfTheDay": "dinner",
"event": "declaration"
},
{
"name": "tomates cerises",
"type": "food",
"timeOfTheDay": "dinner",
"event": "declaration"
},
{
"name": "jambon cru",
"type": "food",
"timeOfTheDay": "dinner",
"event": "declaration"
}
]
```
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
```json
[
{
"name": "mozzarella",
"type": "food",
"timeOfTheDay": "dinner",
"event": "declaration"
},
{
"name": "melon",
"type": "food",
"timeOfTheDay": "dinner",
"event": "declaration"
},
{
"name": "tomates cerises",
"type": "food",
"timeOfTheDay": "dinner",
"event": "declaration"
},
{
"name": "jambon cru",
"type": "food",
"timeOfTheDay": "dinner",
"event": "declaration"
}
]
```
------------------------------------------------------
------------------------ After simplification ------------------------
[ { "name": "mozzarella", "type": "food", "timeOfTheDay": "dinner", "event": "declaration" }, { "name": "melon", "type": "food", "timeOfTheDay": "dinner", "event": "declaration" }, { "name": "tomates cerises", "type": "food", "timeOfTheDay": "dinner", "event": "declaration" }, { "name": "jambon cru", "type": "food", "timeOfTheDay": "dinner", "event": "declaration" }]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'mozzarella', 'type': 'food', 'timeOfTheDay': 'dinner', 'event': 'declaration'}, {'name': 'melon', 'type': 'food', 'timeOfTheDay': 'dinner', 'event': 'declaration'}, {'name': 'tomates cerises', 'type': 'food', 'timeOfTheDay': 'dinner', 'event': 'declaration'}, {'name': 'jambon cru', 'type': 'food', 'timeOfTheDay': 'dinner', 'event': 'declaration'}], 'cost': 0.0}
--------------------------------------------------------------------------------
----------- result to be analyzed -----------
{'name': 'mozzarella', 'type': 'food', 'timeOfTheDay': 'dinner', 'event': 'declaration'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% mozzarella %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Raviolis Frais Mozzarella, Aubergines, Tomates - ravioli frai mozzarella aubergine tomate - - - 106 - - - KCA#d4f4e3a8c39b3ea26608b7b1be1e7382
----------------------------------------------------
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
----------- result to be analyzed -----------
{'name': 'melon', 'type': 'food', 'timeOfTheDay': 'dinner', 'event': 'declaration'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% melon %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Melon - melon - gros - - 0 - - - KCA#5cc523eef9e42851707c24552b47f6af
Melon - melon - petit - - 15997 - - - KCA#885237474ee2442ff374f85fc6fb6e49
Melon - melon - blanc - - 1433 - - - KCA#10bed80aac0f11015597dd722b0402d0
Melon au Cassis - melon cassi - - - 59 - - - KCA#f42b7e69e07e21854350a0f4e9d88060
Melon au Pastis - melon pasti - - - 14 - - - KCA#cc977c7170a74c39f55770239fe8c34d
Melon Cantaloup - melon cantaloup - par ex.: Charentais, de Cavaillon, pulpe, cru - - 0 - - - CIQ#2f89188f745a5f9eb9b09cf8af524649
Melons au Muscat - melon muscat - - - 5 - - - KCA#93d92ba1896cc0c9247829b9a00ac517
Melon des Bénédictins - melon de benedictin - - - 5 - - - KCA#b276e8efcf8fb1fbfabc9ee62e3e711e
Compote Melon - compote melon - - - 9 - - - KCA#84d506540870d2b2a4b3c6d33069092a
Billes de Melon - bille de melon - - - 206 - - - KCA#d8157715bf2f44357e5a4eeaaf6d2069
Jus d'Orange, Ananas et Glace au Melon - ju orange anana glace melon - - - 21 - - - KCA#3e4e71456576da23059304f3eba50c9c
----------------------------------------------------
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
----------- result to be analyzed -----------
{'name': 'tomates cerises', 'type': 'food', 'timeOfTheDay': 'dinner', 'event': 'declaration'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% tomate cerise %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Tomate Cerise - tomate cerise - crue - - 0 - - - CIQ#9f76e2172737f480f1c9b66f3627bfb0
Tomate Cerise - tomate cerise - tomate cerise - - 0 - - - KCA#fc7d1647e177b261c9a22262037f6216
Tomates Cerises Rôties aux Broccolinis - tomate cerise rotie au broccolini - et graines de citrouille - - 7 - - - KCA#b4e4bc20b89f5f2678a4843a5d0f40ea
----------------------------------------------------
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
----------- result to be analyzed -----------
{'name': 'jambon cru', 'type': 'food', 'timeOfTheDay': 'dinner', 'event': 'declaration'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% jambon cru %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Jambon Cru - jambon cru - - - 9885 - - - CIQ#64b8482a5f9494f91650a6dfbb0cd41e
Jambon Cru - jambon cru - fumé - - 268 - - - CIQ#5f3f73264b7c8e8500821bffaac09aee
Jambon Cru - jambon cru - fumé, allégé en matière grasse - - 0 - - - CIQ#f647a53f900ffb0f8b6bcc1b9daac3fd
Pizza au Speck ou Jambon Cru - pizza speck ou jambon cru - - - 0 - - - CIQ#3f16647ebd7a191191b99b195cd9379f
----------------------------------------------------
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
ERROR: Wrong quantity: ''
ERROR: no solution for picto in the first solution
--------------------------------- final result -----------------------------------
{'prompt': "J'ai mangé ce soir de la mozzarella avec du melon des tomates cerises et un peu de jambon cru", 'intents': ['Identify food consumption or declaration'], 'model': 'gpt-4o-2024-05-13', 'solutions': {'nutrition': [{'name': 'Raviolis Frais Mozzarella, Aubergines, Tomates', 'normName': ' ravioli frai mozzarella aubergine tomate ', 'comment': '', 'normComment': '', 'rank': 106, 'id': 'KCA#d4f4e3a8c39b3ea26608b7b1be1e7382', 'quantity': '', 'quantityLem': '', 'pack': ['RAV.w150'], 'type': 'food', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': 'dinner', 'event': 'declaration', 'serving': '', 'posiNormName': 13}, {'name': 'Melon', 'normName': ' melon ', 'comment': 'gros', 'normComment': ' gro ', 'rank': 0, 'id': 'KCA#5cc523eef9e42851707c24552b47f6af', 'quantity': '', 'quantityLem': '', 'pack': ['MEL.w1000', 'CUB.w10'], 'type': 'food', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': 'dinner', 'event': 'declaration', 'serving': '', 'posiNormName': 0}, {'name': 'Tomate Cerise', 'normName': ' tomate cerise ', 'comment': 'crue', 'normComment': ' crue ', 'rank': 0, 'id': 'CIQ#9f76e2172737f480f1c9b66f3627bfb0', 'quantity': '', 'quantityLem': '', 'pack': ['CER.w150'], 'type': 'food', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': 'dinner', 'event': 'declaration', 'serving': '', 'posiNormName': 0}, {'name': 'Jambon Cru', 'normName': ' jambon cru ', 'comment': '', 'normComment': '', 'rank': 9885, 'id': 'CIQ#64b8482a5f9494f91650a6dfbb0cd41e', 'quantity': '', 'quantityLem': '', 'pack': ['TR3.w25'], 'type': 'food', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': 'dinner', 'event': 'declaration', 'serving': '', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 5.603587627410889}
----------------------------------------------------------------------------------
LLM CPU Time: 5.603587627410889