Input path: /home/debian/html/nutritwin/output_llm/66c2db7f3f518/input.json
Output path: /home/debian/html/nutritwin/output_llm/66c2db7f3f518/output.json
Input text: J'ai mangé une barre chocolatée
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user: J'ai mangé une barre chocolatée
==================================================================================================================================
==================================== Prompt =============================================
Identify in this list of intents: ["Identify food consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###J'ai mangé une barre chocolatée###.
Format the result in JSON format: {intents: []}.
=========================================================================================
------------------------------ LLM Raw response -----------------------------
```json
{
"intents": ["Identify food consumption or declaration"]
}
```
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
```json
{
"intents": ["Identify food consumption or declaration"]
}
```
------------------------------------------------------
------------------------ After simplification ------------------------
{ "intents": ["Identify food consumption or declaration"]}
----------------------------------------------------------------------
==================================== Prompt =============================================
Convert this natural language query : """J'ai mangé une barre chocolatée""" into an array in JSON of consumed foods and beverages.
Provide a solution without explanation.
Use only the ontology described in this Turtle/RDF model:
"""
@prefix food: .
@prefix rdfs: .
@prefix xsd: .
@prefix owl: .
@prefix prov: .
food: a owl:Ontology ;
rdfs:comment "Definition of the food archetype"@en .
food:name a owl:DatatypeProperty;
rdfs:label "name"@en;
rdfs:comment "Food or drink identifier, the name should not contain information related to quantity or container (like glass...). The cooking mode is not in the name. When the brand is very well-known (ex: Activia, Coca-Cola), the name is equal to the brand. Keep the same language"@en;
rdfs:range xsd:string.
food:quantity a owl:DatatypeProperty ;
rdfs:label "quantity"@en;
rdfs:comment "The quantity of food or drink that is or was consumed. Quantity examples in french: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en;
rdfs:range xsd:string.
food:cookingMethod a owl:DatatypeProperty ;
rdfs:label "cooking method"@en;
rdfs:comment "The cooking method of food. Keep the same language"@en;
rdfs:range xsd:string.
food:type a owl:DatatypeProperty ;
rdfs:label "type of food"@en;
rdfs:comment "Identify the type of food."@en;
rdfs:range xsd:string.
food:food a food:type ;
rdfs:label "food" .
food:beverage a food:type ;
rdfs:label "beverage" .
food:timeOfTheDay a owl:DatatypeProperty ;
rdfs:label "time of the day"@en;
rdfs:comment "Time of the day when food or drink was consumed."@en;
rdfs:range xsd:string.
food:breakfast a food:timeOfTheDay ;
rdfs:label "breakfast" .
food:lunch a food:timeOfTheDay ;
rdfs:label "lunch" .
food:snacking a food:timeOfTheDay ;
rdfs:label "snacking" .
food:dinner a food:timeOfTheDay ;
rdfs:label "dinner" .
food:brand a owl:DatatypeProperty ;
rdfs:label "Brand"@en;
rdfs:comment "Food or beverage brand. The restaurants are not brand. When the 'brand' is not specified and, the food or beverage is very well-known (like 'Coca-Cola'), provide the brand name in 'brand', otherwise set 'brand' to ''."@en;
rdfs:range xsd:string.
food:company a owl:DatatypeProperty ;
rdfs:label "Company"@en;
rdfs:comment "Product company."@en;
rdfs:range xsd:string.
food:enumEvent a rdfs:Class .
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
"""
=========================================================================================
------------------------------ LLM Raw response -----------------------------
```json
[
{
"name": "barre chocolatée",
"quantity": "une",
"type of food": "food",
"event": "declaration"
}
]
```
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
```json
[
{
"name": "barre chocolatée",
"quantity": "une",
"type of food": "food",
"event": "declaration"
}
]
```
------------------------------------------------------
------------------------ After simplification ------------------------
[ { "name": "barre chocolatée", "quantity": "une", "type of food": "food", "event": "declaration" }]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'barre chocolatée', 'quantity': 'une', 'type of food': 'food', 'event': 'declaration'}], 'cost': 0.0}
--------------------------------------------------------------------------------
----------- result to be analyzed -----------
{'name': 'barre chocolatée', 'quantity': 'une', 'type of food': 'food', 'event': 'declaration'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% barre chocolatee %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Barre Chocolatée - barre chocolatee - non biscuitée enrobée - - 43 - - - KCA#3e0a3248170cb7b6e22a6ceb7e9fc0e5
Barre Chocolatée Glacée - barre chocolatee glacee - - - 34 - - - KCA#d05897887e67735206cf841edf7ca5bf
Barre Chocolatée Enrobée - barre chocolatee enrobee - - - 65 - - - KCA#a50d3a93a3e6e98e979c050bf372cc4d
Barre Chocolatée Biscuitée - barre chocolatee biscuitee - - - 57 - - - CIQ#b04fb04098639b9cde52642dd4ac7b60
Barre Chocolatée au Caramel - barre chocolatee caramel - - - 69 - - - KCA#cf9aad8128c8f7ceb16637df44490c05
Barre Chocolatée aux Fruits Secs - barre chocolatee au fruit sec - - - 11 - - - CIQ#da19aae05011c349b195f42912787041
Barre Chocolatée aux Fruits Secs - barre chocolatee au fruit sec - - - 0 - - - KCA#da19aae05011c349b195f42912787041
Barre Chocolatée Non Biscuitée Enrobée - barre chocolatee non biscuitee enrobee - - - 0 - - - CIQ#2f77e59e06d8693f01973db1e02734dc
----------------------------------------------------
ERROR: no solution for picto in the first solution
--------------------------------- final result -----------------------------------
{'prompt': "J'ai mangé une barre chocolatée", 'intents': ['Identify food consumption or declaration'], 'model': 'gpt-4o-2024-05-13', 'solutions': {'nutrition': [{'name': 'Barre Chocolatée', 'normName': ' barre chocolatee ', 'comment': 'non biscuitée enrobée', 'normComment': ' non biscuitee enrobee ', 'rank': 43, 'id': 'KCA#3e0a3248170cb7b6e22a6ceb7e9fc0e5', 'quantity': 'une', 'quantityLem': '1', 'pack': ['BAR.w25'], 'type': '', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': '', 'event': 'declaration', 'serving': '', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 2.407433032989502}
----------------------------------------------------------------------------------
LLM CPU Time: 2.407433032989502