Input path: /home/debian/html/nutritwin/output_llm/674560e99a09c/input.json
Output path: /home/debian/html/nutritwin/output_llm/674560e99a09c/output.json
Input text:
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user:
==================================================================================================================================
###########################################
# For image extraction, GPT4 is used #
###########################################
==================================== Prompt =============================================
In the image, identify all the foods and the beverages.
For each of them, identify the "name", the "type", the "quantity", if it exists, the "brand" and the "cooking" mode.
"Portions", like "tranche", are quantities.
Ignore what it is not connected to nutrition, beverage or food.
When the "brand" is not specified and the product is very well-known (like "Coca-Cola"), provide the brand name in "brand", otherwise set "brand" to "".
Identify what "type" of food.
Identify the "company" to which the "brand" belongs.
Estimate the "weight" in grams or centiliters for each result.
Identify the time is the current time, map it on the closest case: "petit-déjeuner", "déjeuner", "grignotage" or "dîner".
When the "name" has synonyms, use the most common name, example: "yaourt" is more common than "yogourt".
Format the result for each ingredient of food & beverage in french in JSON in an array of tuples {"name":, "quantity":, "weight":, "cooking":, "brand":, "company":, "type":, "time":, "event": "declaration"}.
=========================================================================================
Image recognition....
------------------------------ LLM Raw response -----------------------------
[
{
"name": "margarine",
"quantity": "une barquette",
"weight": "250g",
"cooking": "",
"brand": "Primevère",
"company": "Unilever",
"type": "matière grasse tartinable",
"time": "grignotage",
"event": "declaration"
}
]
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
[
{
"name": "margarine",
"quantity": "une barquette",
"weight": "250g",
"cooking": "",
"brand": "Primevère",
"company": "Unilever",
"type": "matière grasse tartinable",
"time": "grignotage",
"event": "declaration"
}
]
------------------------------------------------------
------------------------ After simplification ------------------------
[ { "name": "margarine", "quantity": "une barquette", "weight": "250g", "cooking": "", "brand": "Primevère", "company": "Unilever", "type": "matière grasse tartinable", "time": "grignotage", "event": "declaration" }]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'margarine', 'quantity': 'une barquette', 'weight': '250g', 'cooking': '', 'brand': 'Primevère', 'company': 'Unilever', 'type': 'matière grasse tartinable', 'time': 'grignotage', 'event': 'declaration'}], 'cost': 0.0}
--------------------------------------------------------------------------------
----------- result to be analyzed -----------
{'name': 'margarine', 'quantity': 'une barquette', 'weight': '250g', 'cooking': '', 'brand': 'Primevère', 'company': 'Unilever', 'type': 'matière grasse tartinable', 'time': 'grignotage', 'event': 'declaration'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% margarine %' AND V_NormTrademark LIKE '%primevere%'
Second try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormAggr LIKE '% margarine %' AND V_NormTrademark LIKE '%primevere%'
Third try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormAggr LIKE '% margarine %' AND V_NormAggr LIKE '% primevere %' AND V_NormAggr LIKE '% unilever %'
-------------------------------------------
------ERROR--------------------------------
No solution for query: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormAggr LIKE '% margarine %' AND V_NormAggr LIKE '% primevere %' AND V_NormAggr LIKE '% unilever %'
-------------------------------------------
-------------------------------------------
--------------------------------- final result -----------------------------------
{'prompt': '', 'intents': ['Identify food in an image'], 'model': 'gpt-4o-2024-05-13', 'solutions': {'nutrition': [], 'activity': [], 'response': {}}, 'cputime': 3.8869290351867676}
----------------------------------------------------------------------------------
LLM CPU Time: 3.8869290351867676