Input path: /home/debian/html/nutritwin/output_llm/67572a7ec61eb/input.json
Output path: /home/debian/html/nutritwin/output_llm/67572a7ec61eb/output.json
Input text: Ensuite j'ai bu une canette de Fanta.
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user: Ensuite j'ai bu une canette de Fanta.
==================================================================================================================================
==================================== Prompt =============================================
Identify in this list of intents: ["Identify food and beverage consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Ensuite j'ai bu une canette de Fanta.###.
Format the result in JSON format: {"intents": []}.
=========================================================================================
------------------------------ LLM Raw response -----------------------------
{"intents": ["Identify food and beverage consumption or declaration"]}
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
{"intents": ["Identify food and beverage consumption or declaration"]}
------------------------------------------------------
ERROR: wrong object representation:
{'intents': ['Identify food and beverage consumption or declaration']}
------------------------ After simplification ------------------------
{
"intents": [
"Identify food and beverage consumption or declaration"
]
}
----------------------------------------------------------------------
==================================== Prompt =============================================
Convert this natural language query : """Ensuite j'ai bu une canette de Fanta.""" into an array of JSON.
Ignore what it is not connected to nutrition, beverage or food.
Provide a solution without explanation.
Use the following ontology and only this ontology described in this Turtle/RDF model:
"""
@prefix food: .
@prefix rdfs: .
@prefix xsd: .
@prefix owl: .
@prefix prov: .
food: a owl:Ontology ;
rdfs:comment "Definition of the food archetype"@en .
food:name a owl:DatatypeProperty;
rdfs:label "name"@en;
rdfs:comment "Food or beverage identifier, the name should not contain information related to quantity or container (like glass...)."@en;
rdfs:comment "Ignore food or beverage when it is not consumed in the past, now or in the future."@en;
rdfs:comment "The cooking mode is not in the name. The name is only in french."@en;
rdfs:range xsd:string.
food:quantity a owl:DatatypeProperty ;
rdfs:label "quantity"@en;
rdfs:comment "The quantity of food or drink that is or was consumed. Quantity is only in french. Here are examples: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en;
rdfs:range xsd:string.
food:cookingMethod a owl:DatatypeProperty ;
rdfs:label "cooking method"@en;
rdfs:comment "The cooking method of food. The cooking method is in french."@en;
rdfs:range xsd:string.
food:type a owl:DatatypeProperty ;
rdfs:label "type of food"@en;
rdfs:comment "Identify the type of food."@en;
rdfs:range xsd:string.
food:food a food:type ;
rdfs:label "food" .
food:beverage a food:type ;
rdfs:label "beverage" .
food:timeOfTheDay a owl:DatatypeProperty ;
rdfs:label "time of the day"@en;
rdfs:comment "Time of the day when food or drink was consumed."@en;
rdfs:range xsd:string.
food:breakfast a food:timeOfTheDay ;
rdfs:label "breakfast" .
food:lunch a food:timeOfTheDay ;
rdfs:label "lunch" .
food:snacking a food:timeOfTheDay ;
rdfs:label "snacking" .
food:dinner a food:timeOfTheDay ;
rdfs:label "dinner" .
food:brand a owl:DatatypeProperty ;
rdfs:label "Brand"@en;
rdfs:comment "Food or beverage brand. The restaurants are not brand."@en;
rdfs:comment "When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."@en;
rdfs:range xsd:string.
food:company a owl:DatatypeProperty ;
rdfs:label "Company"@en;
rdfs:comment "Product company."@en;
rdfs:range xsd:string.
food:enumEvent a rdfs:Class .
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
"""
Here is an example of result:
[
{
"name": "blanquette de veau",
"quantity": "un plat",
"cookingMethod": "mijot\u00e9",
"timeOfTheDay": "lunch",
"company": "Leclerc",
"type": "food",
"event": "declaration"
},
{
"name": "eau",
"brand": "Evian",
"company": "Danone",
"timeOfTheDay": "breakfast",
"quantity": "un verre",
"type": "beverage",
"event": "intent"
}
]
=========================================================================================
------------------------------ LLM Raw response -----------------------------
[
{
"name": "Fanta",
"quantity": "une canette",
"timeOfTheDay": "unknown",
"brand": "Fanta",
"type": "beverage",
"event": "declaration"
}
]
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
[
{
"name": "Fanta",
"quantity": "une canette",
"timeOfTheDay": "unknown",
"brand": "Fanta",
"type": "beverage",
"event": "declaration"
}
]
------------------------------------------------------
------------------------ After simplification ------------------------
[
{
"name": "Fanta",
"quantity": "une canette",
"timeOfTheDay": "unknown",
"brand": "Fanta",
"type": "beverage",
"event": "declaration"
}
]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'Fanta', 'quantity': 'une canette', 'timeOfTheDay': 'unknown', 'brand': 'Fanta', 'type': 'beverage', 'event': 'declaration'}], 'cost': 0.10091999999999998}
--------------------------------------------------------------------------------
----------- result to be analyzed -----------
{'name': 'Fanta', 'quantity': 'une canette', 'timeOfTheDay': 'unknown', 'brand': 'Fanta', 'type': 'beverage', 'event': 'declaration'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% fanta %' AND V_NormTrademark LIKE '%fanta%'
Second try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% fanta %' AND V_NormAggr LIKE '% fanta %'
------------- Found solution (max 20) --------------
Fanta - fanta - - The Coca-Cola Company - 0 - 5000112659610 - 5000112659610 - OFF#2cd1c5dbccdccbd27f3c2968316989e8
Fanta - fanta - - The Coca-Cola Company - 0 - 5449000188526 - 5000112659610 - OFF#0fd97675ce300bfe48474ff5edcf7968
Fanta - fanta - - The Coca-Cola Company - 0 - 5449000000088 - 5000112659610 - OFF#e5a76692fd965e23be7ab28249ac41c3
Fanta - fanta - - The Coca-Cola Company - 0 - 90495090 - 5000112659610 - OFF#9a30c250f1976a057baa7a14c0304c3f
Fanta Grape - fanta grape - - The Coca-Cola Company - 0 - 4902102038720 - 4902102038720 - OFF#2f4f5f22c41c4138d3a1fd74458da5c9
Fanta Mango - fanta mango - - The Coca-Cola Company - 0 - 90494055 - 90494055 - OFF#b8239cc11f4237762d538f0bf70d3dcd
Fanta Orange - fanta orange - - The Coca-Cola Company - 0 - 2000000003786 - 2000000003786 - OFF#7ddea249c993fe80ec9ba14232c2fd35
Fanta Fraise - fanta fraise - - PepsiCo - 0 - 5449000065247 - 5449000065247 - OFF#c4692eb24b23290b2f87a43b92076501
Fanta Orange - fanta orange - - The Coca-Cola Company - 0 - 5000112548082 - 2000000003786 - OFF#2dd0d44102d85fb31ee7edd296904eb8
Fanta Orange - fanta orange - - The Coca-Cola Company - 0 - 5000112547849 - 2000000003786 - OFF#10a08787485f183bfb66ffae15c58e79
Fanta Orange - fanta orange - - The Coca-Cola Company - 0 - 5449000287038 - 2000000003786 - OFF#2b5a39ca98c59b05d89896bd41183f77
Fanta Exotique - fanta exotique - - The Coca-Cola Company - 0 - 3292090141320 - 3292090141320 - OFF#9216b13105fa23bc3f88b7e01ddc613e
Fanta Strawberry Kiwi - fanta strawberry kiwi - - PepsiCo - 0 - 4260231223258 - 4260231223258 - OFF#7f367b7e1a0ff82c7c610841ae7f5153
Fanta Lemon Ohne Zuker - fanta lemon ohne zuker - - The Coca-Cola Company - 0 - 5449000665928 - 5449000665928 - OFF#0e3d3175cdad9ce2691bd3bc0d1ceebb
Fanta Orange Zero Sugar - fanta orange zero sugar - - The Coca-Cola Company - 0 - 5449000664761 - 5449000664761 - OFF#fd0db9b2a55f45cde3c6c8b7dc7fba36
Fanta Saveur Pomme Cerise - fanta saveur pomme cerise - - The Coca-Cola Company - 0 - 5449000091178 - - OFF#c26a42592639dcc0977cca531669ec77
----------------------------------------------------
--------------------------------- final result -----------------------------------
{'prompt': "Ensuite j'ai bu une canette de Fanta.", 'model': 'mistral-large-2411', 'imagePath': '', 'intents': ['Identify food and beverage consumption or declaration'], 'solutions': {'nutrition': [{'name': 'Fanta', 'normName': ' fanta ', 'comment': '', 'normComment': '', 'rank': 0, 'id': 'OFF#2cd1c5dbccdccbd27f3c2968316989e8', 'quantity': 'une canette', 'quantityLem': '1 canette', 'pack': ['VX1', 'BI4', 'VA2', 'VA3', 'GOB', 'C3B', 'C33', 'C15', 'SOD', 'VA4', 'VFF'], 'type': 'beverage', 'gtin': '5000112659610', 'gtinRef': '5000112659610', 'brand': 'The Coca-Cola Company', 'time': 'unknown', 'event': 'declaration', 'serving': 'C33-100', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 3.664919376373291}
----------------------------------------------------------------------------------
LLM CPU Time: 3.664919376373291