Input path: /home/debian/html/nutritwin/output_llm/677c1954e2e9c/input.json Output path: /home/debian/html/nutritwin/output_llm/677c1954e2e9c/output.json Input text: DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: ================================================================================================================================== Image to be analyzed: /home/debian/html/nutritwin/output_llm/677c1954e2e9c/capture.jpg ############################################################################################## # For image extraction, pixtral-large-2411 is used # ############################################################################################## ==================================== Prompt ============================================= In the image, identify all the foods and beverages, convert them into an array of JSON with consumed foods. Ignore what it is not connected to nutrition, beverage or food. When a food or a beverage has several instances unify them on a single food or beverage and add the quantities of each. The attribute name must remain in English but the result, so the attribute value, must be in french, and only in french. Provide a solution without explanation. Use only the food & beverage ontology described in this Turtle/RDF model: """ @prefix food: . @prefix rdfs: . @prefix xsd: . @prefix owl: . @prefix prov: . food: a owl:Ontology ; rdfs:comment "Definition of the food archetype"@en . food:name a owl:DatatypeProperty; rdfs:label "name"@en; rdfs:comment """Food or beverage identifier, the name should not contain information related to quantity or container (like glass...). Ignore food or beverage when it is not consumed in the past, now or in the future. The cooking mode is not in the name. The name is only in french."""@en; rdfs:range xsd:string. food:quantity a owl:DatatypeProperty ; rdfs:label "quantity"@en; rdfs:comment "The quantity of food or drink that is or was consumed. Quantity is only in french. Here are examples: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en; rdfs:range xsd:string. food:cookingMethod a owl:DatatypeProperty ; rdfs:label "cooking method"@en; rdfs:comment "The cooking method of food. The cooking method is in french."@en; rdfs:range xsd:string. food:type a owl:DatatypeProperty ; rdfs:label "type of food"@en; rdfs:comment "Identify the type of food."@en; rdfs:range xsd:string. food:food a food:type ; rdfs:label "food" . food:beverage a food:type ; rdfs:label "beverage" . food:timeOfTheDay a owl:DatatypeProperty ; rdfs:label "time of the day"@en; rdfs:comment "Time of the day when food or drink was consumed."@en; rdfs:range xsd:string. food:breakfast a food:timeOfTheDay ; rdfs:label "breakfast" . food:lunch a food:timeOfTheDay ; rdfs:label "lunch" . food:snacking a food:timeOfTheDay ; rdfs:label "snacking" . food:dinner a food:timeOfTheDay ; rdfs:label "dinner" . food:brand a owl:DatatypeProperty ; rdfs:label "Brand"@en; rdfs:comment """Food or beverage brand. The restaurants are not brand. When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."""@en; rdfs:range xsd:string. food:company a owl:DatatypeProperty ; rdfs:label "Company"@en; rdfs:comment "Product company."@en; rdfs:range xsd:string. food:enumEvent a rdfs:Class . food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range food:enumEvent. food:intent a food:enumEvent ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:enumEvent ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:enumEvent ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range food:enumEvent. food:intent a food:enumEvent ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:enumEvent ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:enumEvent ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. """ Here is an example of result: [ { "name": "blanquette de veau", "quantity": "un plat", "cookingMethod": "mijot\u00e9", "timeOfTheDay": "lunch", "company": "Leclerc", "type": "food", "event": "declaration" }, { "name": "eau", "brand": "Evian", "company": "Danone", "timeOfTheDay": "breakfast", "quantity": "un verre", "type": "beverage", "event": "intent" } ] ========================================================================================= ------------------------------ LLM Raw response ----------------------------- [ { "name": "miel", "quantity": "un pot", "type": "food", "event": "unknownEvent" } ] ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ [ { "name": "miel", "quantity": "un pot", "type": "food", "event": "unknownEvent" } ] ------------------------------------------------------ ------------------------ After simplification ------------------------ [ { "name": "miel", "quantity": "un pot", "type": "food", "event": "unknownEvent" } ] ---------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': [{'name': 'miel', 'quantity': 'un pot', 'type': 'food', 'event': 'unknownEvent'}], 'cost': 0.0} -------------------------------------------------------------------------------- ----------- result to be analyzed ----------- {'name': 'miel', 'quantity': 'un pot', 'type': 'food', 'event': 'unknownEvent'} First try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% miel %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL) ------------- Found solution (max 20) -------------- Miel - miel - - - 0 - - - KCA#96ff85afb6bb999b8e49234b7c73b6bf Miel à la Crème - miel creme - - - 11 - - - KCA#a8954a11bb2f917d2296765e03573431 Yaourt au Miel - yaourt miel - au miel - - 0 - - - KCA#7bc806db91685c4866b04b5c0572e837 Poulet au Miel - poulet miel - et salade de Fenouil et Céleri à la crème - - 43 - - - KCA#10b8495a1834253e87733dc33ffcfd80 Céréales au Miel - cereale miel - - - 101 - - - KCA#b7c3cb966f2cb1fa8c64e261bae639cb Tartine de Miel - tartine de miel - de miel - - 0 - - - KCA#f1120bad0f1824670c66545c12c253b8 Smoothie Fraise, Miel et Lait de Soja - smoothie fraise miel lait de soja - de soja - - 0 - - - KCA#0df871f30036f11a511b24cd8865c9d1 Gaufre Fine Fourrée au Miel - gaufre fine fourree miel - - - 0 - - - CIQ#d7548ec38dd18f8b746f4a84d1c5a299 Grains de Blé Soufflés au Miel ou Caramel - grain de ble souffle miel ou caramel - enrichis en vitamines et minéraux - - 0 - - - CIQ#2069162d695f520f936002ca3ae5b9ba Boules de Maïs Soufflées au Miel - boule de mai soufflee miel - enrichies en vitamines et minéraux - - 0 - - - CIQ#38b642aa77c7f83166bc66cda176b3a2 Boules de Maïs Soufflées au Miel - boule de mai soufflee miel - non enrichies en vitamines et minéraux - - 0 - - - CIQ#0a24c0c921aa72366a89dba7d796aa56 Salade Betteraves et Agneau au Miel - salade betterave agneau miel - - - 24 - - - KCA#2166cb4870932bad02161df026c04633 Brochette de Fruits et Yaourt au Miel - brochette de fruit yaourt miel - - - 28 - - - KCA#11eeb2c6445f4bdf8b9cea8483524d8e Céréales pour Petit Déjeuner "équilibre" Nature ou au Miel - cereale pour petit dejeuner equilibre nature ou miel - enrichies en vitamines et minéraux - - 0 - - - CIQ#35a6751d63934e94c6ee6428fc45e658 ---------------------------------------------------- ERROR: no solution for picto in the first solution --------------------------------- final result ----------------------------------- {'prompt': '', 'model': 'mistral-large-2411', 'imagePath': '/home/debian/html/nutritwin/output_llm/677c1954e2e9c/capture.jpg', 'intents': ['Identify foods and beverages in an image'], 'solutions': {'nutrition': [{'name': 'Miel', 'normName': ' miel ', 'comment': '', 'normComment': '', 'rank': 0, 'id': 'KCA#96ff85afb6bb999b8e49234b7c73b6bf', 'quantity': 'un pot', 'quantityLem': '1 pot', 'pack': ['CCS.w10', 'MAR.w35'], 'type': 'food', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': '', 'event': 'unknownEvent', 'serving': '', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 2.275656223297119} ---------------------------------------------------------------------------------- LLM CPU Time: 2.275656223297119