Input path: /home/debian/html/nutritwin/output_llm/679e12c9e553c/input.json
Output path: /home/debian/html/nutritwin/output_llm/679e12c9e553c/output.json
Input text:
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user:
==================================================================================================================================
Image to be analyzed: /home/debian/html/nutritwin/output_llm/679e12c9e553c/capture.jpg
##############################################################################################
# For image extraction, pixtral-large-2411 is used #
##############################################################################################
==================================== Prompt =============================================
In the image, identify all the foods and beverages, convert them into an array of JSON with consumed foods.
Ignore what it is not connected to nutrition, beverage or food.
When a food or a beverage has several instances unify them on a single food or beverage and add the quantities of each.
The attribute name must remain in English but the result, so the attribute value, must be in french, and only in french.
Provide a solution without explanation.
Use only the food & beverage ontology described in this Turtle/RDF model:
"""
@prefix food: .
@prefix rdfs: .
@prefix xsd: .
@prefix owl: .
@prefix prov: .
food: a owl:Ontology ;
rdfs:comment "Definition of the food archetype"@en .
food:name a owl:DatatypeProperty;
rdfs:label "name"@en;
rdfs:comment """Food or beverage identifier, the name should not contain information related to quantity or container (like glass...).
Ignore food or beverage when it is not consumed in the past, now or in the future.
The cooking mode is not in the name. The name is only in french."""@en;
rdfs:range xsd:string.
food:quantity a owl:DatatypeProperty ;
rdfs:label "quantity"@en;
rdfs:comment "The quantity of food or drink that is or was consumed. Quantity is only in french. Here are examples: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en;
rdfs:range xsd:string.
food:cookingMethod a owl:DatatypeProperty ;
rdfs:label "cooking method"@en;
rdfs:comment "The cooking method of food. The cooking method is in french."@en;
rdfs:range xsd:string.
food:type a owl:DatatypeProperty ;
rdfs:label "type of food"@en;
rdfs:comment "Identify the type of food."@en;
rdfs:range xsd:string.
food:food a food:type ;
rdfs:label "food" .
food:beverage a food:type ;
rdfs:label "beverage" .
food:timeOfTheDay a owl:DatatypeProperty ;
rdfs:label "time of the day"@en;
rdfs:comment "Time of the day when food or drink was consumed."@en;
rdfs:range xsd:string.
food:breakfast a food:timeOfTheDay ;
rdfs:label "breakfast" .
food:lunch a food:timeOfTheDay ;
rdfs:label "lunch" .
food:snacking a food:timeOfTheDay ;
rdfs:label "snacking" .
food:dinner a food:timeOfTheDay ;
rdfs:label "dinner" .
food:brand a owl:DatatypeProperty ;
rdfs:label "Brand"@en;
rdfs:comment """Food or beverage brand. The restaurants are not brand.
When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."""@en;
rdfs:range xsd:string.
food:company a owl:DatatypeProperty ;
rdfs:label "Company"@en;
rdfs:comment "Product company."@en;
rdfs:range xsd:string.
food:enumEvent a rdfs:Class .
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
"""
Here is an example of result:
[
{
"name": "blanquette de veau",
"quantity": "un plat",
"cookingMethod": "mijot\u00e9",
"timeOfTheDay": "lunch",
"company": "Leclerc",
"type": "food",
"event": "declaration"
},
{
"name": "eau",
"brand": "Evian",
"company": "Danone",
"timeOfTheDay": "breakfast",
"quantity": "un verre",
"type": "beverage",
"event": "intent"
}
]
=========================================================================================
------------------------------ LLM Raw response -----------------------------
[
{
"name": "spaghetti",
"quantity": "une assiette",
"type": "food",
"event": "declaration"
}
]
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
[
{
"name": "spaghetti",
"quantity": "une assiette",
"type": "food",
"event": "declaration"
}
]
------------------------------------------------------
------------------------ After simplification ------------------------
[
{
"name": "spaghetti",
"quantity": "une assiette",
"type": "food",
"event": "declaration"
}
]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'spaghetti', 'quantity': 'une assiette', 'type': 'food', 'event': 'declaration'}], 'cost': 0.0}
--------------------------------------------------------------------------------
----------- result to be analyzed -----------
{'name': 'spaghetti', 'quantity': 'une assiette', 'type': 'food', 'event': 'declaration'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% spaghetti %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Spaghetti à la Tomate - spaghetti tomate - la tomate - - 0 - - - KCA#eac5b007f90ab2170453e966d0134877
Spaghetti Frais Cuits - spaghetti frai cuit - frais cuits - - 0 - - - KCA#969c66ff3ff2d2a3550299ddebae039d
Spaghetti au Brocoli, - spaghetti brocoli - au Parmesan et à l'ail - - 59 - - - KCA#f198684f97ffadd619f67e4bf8502ed2
Spaghetti Sauce Tomate - spaghetti sauce tomate - sauce tomate - - 0 - - - KCA#8e8cc25adac4bb1a5ff6a9bd1950fcd8
Spaghetti à la Carbonara - spaghetti carbonara - la carbonara - - 0 - - - KCA#6ec5df1aa496fd4ac9b5c1a2c62ed018
Spaghetti aux Petits Pois - spaghetti au petit poi - petits pois - - 0 - - - KCA#a2399bcd885726804760f4e591b0f367
Spaghetti à la Bolognaise - spaghetti bolognaise - la bolognaise - - 0 - - - KCA#06b879eee3fcb0b82fe252b2f53197e1
Spaghetti à l'Huile et à l'Ail - spaghetti huile ail - à l'ail - - 0 - - - KCA#8e6881d0aa9ae2dade4533522fc1b3aa
----------------------------------------------------
--------------------------------- final result -----------------------------------
{'prompt': '', 'model': 'mistral-large-2411', 'imagePath': '/home/debian/html/nutritwin/output_llm/679e12c9e553c/capture.jpg', 'intents': ['Identify foods and beverages in an image'], 'solutions': {'nutrition': [{'name': 'Spaghetti à la Tomate', 'normName': ' spaghetti tomate ', 'comment': 'la tomate', 'normComment': ' tomate ', 'rank': 0, 'id': 'KCA#eac5b007f90ab2170453e966d0134877', 'quantity': 'une assiette', 'quantityLem': '1 assiette', 'pack': ['NO2.w200'], 'type': 'food', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': '', 'event': 'declaration', 'serving': 'NO2-100', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 1.703505277633667}
----------------------------------------------------------------------------------
LLM CPU Time: 1.703505277633667