Input path: /home/debian/html/nutritwin/output_llm/67fba6d6b15a8/input.json Output path: /home/debian/html/nutritwin/output_llm/67fba6d6b15a8/output.json Input text: Deux tranches de Marsan chocolat. DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: Deux tranches de Marsan chocolat. ================================================================================================================================== ==================================== Prompt ============================================= Identify in this list of intents: ["Identify food and beverage consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Deux tranches de Marsan chocolat.###. Format the result in JSON format: {"intents": []}. ========================================================================================= ------------------------------ LLM Raw response ----------------------------- {"intents": ["Identify food and beverage consumption or declaration"]} ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ {"intents": ["Identify food and beverage consumption or declaration"]} ------------------------------------------------------ ERROR: wrong object representation: {'intents': ['Identify food and beverage consumption or declaration']} ------------------------ After simplification ------------------------ { "intents": [ "Identify food and beverage consumption or declaration" ] } ---------------------------------------------------------------------- ==================================== Prompt ============================================= Convert this natural language query : """Deux tranches de Marsan chocolat.""" into an array of JSON. Ignore what it is not connected to nutrition, beverage or food. Provide a solution without explanation. Use the following ontology and only this ontology described in this Turtle/RDF model: """ @prefix food: . @prefix rdfs: . @prefix xsd: . @prefix owl: . @prefix prov: . food: a owl:Ontology ; rdfs:comment "Definition of the food archetype"@en . food:name a owl:DatatypeProperty; rdfs:label "name"@en; rdfs:comment """Food or beverage identifier, the name should not contain information related to quantity or container (like glass...). Ignore food or beverage when it is not consumed in the past, now or in the future. The cooking mode is not in the name. The name is only in french."""@en; rdfs:range xsd:string. food:quantity a owl:DatatypeProperty ; rdfs:label "quantity"@en; rdfs:comment "The quantity of food or drink that is or was consumed. Quantity is only in french. Here are examples: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en; rdfs:range xsd:string. food:cookingMethod a owl:DatatypeProperty ; rdfs:label "cooking method"@en; rdfs:comment "The cooking method of food. The cooking method is in french."@en; rdfs:range xsd:string. food:type a owl:DatatypeProperty ; rdfs:label "type of food"@en; rdfs:comment "Identify the type of food."@en; rdfs:range xsd:string. food:food a food:type ; rdfs:label "food" . food:beverage a food:type ; rdfs:label "beverage" . food:timeOfTheDay a owl:DatatypeProperty ; rdfs:label "time of the day"@en; rdfs:comment "Time of the day when food or drink was consumed."@en; rdfs:range xsd:string. food:breakfast a food:timeOfTheDay ; rdfs:label "breakfast" . food:lunch a food:timeOfTheDay ; rdfs:label "lunch" . food:snacking a food:timeOfTheDay ; rdfs:label "snacking" . food:dinner a food:timeOfTheDay ; rdfs:label "dinner" . food:brand a owl:DatatypeProperty ; rdfs:label "Brand"@en; rdfs:comment """Food or beverage brand. The restaurants are not brand. When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."""@en; rdfs:range xsd:string. food:company a owl:DatatypeProperty ; rdfs:label "Company"@en; rdfs:comment "Product company."@en; rdfs:range xsd:string. food:enumEvent a rdfs:Class . food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range food:enumEvent. food:intent a food:enumEvent ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:enumEvent ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:enumEvent ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range food:enumEvent. food:intent a food:enumEvent ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:enumEvent ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:enumEvent ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. """ Here is an example of result: [ { "name": "blanquette de veau", "quantity": "un plat", "cookingMethod": "mijot\u00e9", "timeOfTheDay": "lunch", "company": "Leclerc", "type": "food", "event": "declaration" }, { "name": "eau", "brand": "Evian", "company": "Danone", "timeOfTheDay": "breakfast", "quantity": "un verre", "type": "beverage", "event": "intent" } ] ========================================================================================= ------------------------------ LLM Raw response ----------------------------- [ { "name": "Marsan chocolat", "quantity": "deux tranches", "type": "food", "event": "unknown" } ] ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ [ { "name": "Marsan chocolat", "quantity": "deux tranches", "type": "food", "event": "unknown" } ] ------------------------------------------------------ ------------------------ After simplification ------------------------ [ { "name": "Marsan chocolat", "quantity": "deux tranches", "type": "food", "event": "unknown" } ] ---------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': [{'name': 'Marsan chocolat', 'quantity': 'deux tranches', 'type': 'food', 'event': 'unknown'}], 'cost': 0.09702} -------------------------------------------------------------------------------- ----------- result to be analyzed ----------- {'name': 'Marsan chocolat', 'quantity': 'deux tranches', 'type': 'food', 'event': 'unknown'} First try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% marsan chocolat %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL) --> CPU time in DB: 0.1281 seconds Word: Mars Chocolat au Lait - dist: 0.5507855415344238 - row: 57547 Word: Marschocolate Bar - dist: 0.5656152367591858 - row: 53903 Word: Le Marbré Chocolat - dist: 0.5785977244377136 - row: 33090 Word: Marbrés au Chocolat - dist: 0.5803546905517578 - row: 25641 Word: Marbré Chocolat - dist: 0.5848416090011597 - row: 21464 Found embedding word: Mars Chocolat au Lait Second try (embedded): SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_Name = 'Mars Chocolat au Lait' ------------- Found solution (max 20) -------------- Mars Chocolat au Lait - mar chocolat lait - - Mars - 0 - 5900951257049 - 5900951257049 - OFF#6cbd6900b8d644fb28715c7421559c58 ---------------------------------------------------- ERROR: no solution for picto in the first solution --------------------------------- final result ----------------------------------- {'prompt': 'Deux tranches de Marsan chocolat.', 'model': 'mistral-large-2411', 'imagePath': '', 'intents': ['Identify food and beverage consumption or declaration'], 'solutions': {'nutrition': [{'name': 'Mars Chocolat au Lait', 'normName': ' mar chocolat lait ', 'comment': '', 'normComment': '', 'rank': 0, 'id': 'OFF#6cbd6900b8d644fb28715c7421559c58', 'quantity': 'deux tranches', 'quantityLem': '2 tranche', 'pack': ['BAR.w59'], 'type': 'food', 'gtin': '5900951257049', 'gtinRef': '5900951257049', 'brand': 'Mars', 'time': '', 'event': 'unknown', 'serving': '', 'posiNormName': -1}], 'activity': [], 'response': {}}, 'cputime': 4.345394849777222} ---------------------------------------------------------------------------------- LLM CPU Time: 4.345394849777222