Input path: /home/debian/html/nutritwin/output_llm/682903c5e3162/input.json
Output path: /home/debian/html/nutritwin/output_llm/682903c5e3162/output.json
Input text:
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user:
==================================================================================================================================
Image to be analyzed: /home/debian/html/nutritwin/output_llm/682903c5e3162/capture.jpg
##############################################################################################
# For image extraction, pixtral-large-2411 is used #
##############################################################################################
==================================== Prompt =============================================
In the image, identify all the foods and beverages, convert them into an array of JSON with consumed foods.
Ignore what it is not connected to nutrition, beverage or food.
When a food or a beverage has several instances unify them on a single food or beverage and add the quantities of each.
The attribute name must remain in English but the result, so the attribute value, must be in french, and only in french.
Provide a solution without explanation.
Use only the food & beverage ontology described in this Turtle/RDF model:
"""
@prefix food: .
@prefix rdfs: .
@prefix xsd: .
@prefix owl: .
@prefix prov: .
food: a owl:Ontology ;
rdfs:comment "Definition of the food archetype"@en .
food:name a owl:DatatypeProperty;
rdfs:label "name"@en;
rdfs:comment """Food or beverage identifier, the name should not contain information related to quantity or container (like glass...).
Ignore food or beverage when it is not consumed in the past, now or in the future.
The cooking mode is not in the name. The name is only in french."""@en;
rdfs:range xsd:string.
food:quantity a owl:DatatypeProperty ;
rdfs:label "quantity"@en;
rdfs:comment "The quantity of food or drink that is or was consumed. Quantity is only in french. Here are examples: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en;
rdfs:range xsd:string.
food:cookingMethod a owl:DatatypeProperty ;
rdfs:label "cooking method"@en;
rdfs:comment "The cooking method of food. The cooking method is in french."@en;
rdfs:range xsd:string.
food:type a owl:DatatypeProperty ;
rdfs:label "type of food"@en;
rdfs:comment "Identify the type of food."@en;
rdfs:range xsd:string.
food:food a food:type ;
rdfs:label "food" .
food:beverage a food:type ;
rdfs:label "beverage" .
food:timeOfTheDay a owl:DatatypeProperty ;
rdfs:label "time of the day"@en;
rdfs:comment "Time of the day when food or drink was consumed."@en;
rdfs:range xsd:string.
food:breakfast a food:timeOfTheDay ;
rdfs:label "breakfast" .
food:lunch a food:timeOfTheDay ;
rdfs:label "lunch" .
food:snacking a food:timeOfTheDay ;
rdfs:label "snacking" .
food:dinner a food:timeOfTheDay ;
rdfs:label "dinner" .
food:brand a owl:DatatypeProperty ;
rdfs:label "Brand"@en;
rdfs:comment """Food or beverage brand. The restaurants are not brand.
When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."""@en;
rdfs:range xsd:string.
food:company a owl:DatatypeProperty ;
rdfs:label "Company"@en;
rdfs:comment "Product company."@en;
rdfs:range xsd:string.
food:enumEvent a rdfs:Class .
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
"""
Here is an example of result:
[
{
"name": "blanquette de veau",
"quantity": "un plat",
"cookingMethod": "mijot\u00e9",
"timeOfTheDay": "lunch",
"company": "Leclerc",
"type": "food",
"event": "declaration"
},
{
"name": "eau",
"brand": "Evian",
"company": "Danone",
"timeOfTheDay": "breakfast",
"quantity": "un verre",
"type": "beverage",
"event": "intent"
}
]
=========================================================================================
------------------------------ LLM Raw response -----------------------------
[
{
"name": "vin",
"quantity": "une bouteille",
"brand": "Château Lastours",
"company": "Famille Allard",
"type": "beverage",
"event": "unknownEvent"
}
]
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
[
{
"name": "vin",
"quantity": "une bouteille",
"brand": "Château Lastours",
"company": "Famille Allard",
"type": "beverage",
"event": "unknownEvent"
}
]
------------------------------------------------------
------------------------ After simplification ------------------------
[
{
"name": "vin",
"quantity": "une bouteille",
"brand": "Ch\u00e2teau Lastours",
"company": "Famille Allard",
"type": "beverage",
"event": "unknownEvent"
}
]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'vin', 'quantity': 'une bouteille', 'brand': 'Château Lastours', 'company': 'Famille Allard', 'type': 'beverage', 'event': 'unknownEvent'}], 'cost': 0.0}
--------------------------------------------------------------------------------
----------- result to be analyzed -----------
{'name': 'vin', 'quantity': 'une bouteille', 'brand': 'Château Lastours', 'company': 'Famille Allard', 'type': 'beverage', 'event': 'unknownEvent'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% vin %' AND V_NormTrademark LIKE '%chateau lastours%'
--> CPU time in DB: 0.1168 seconds
Word: Vin - dist: 0.3823418617248535 - row: 394
Word: Vin Blanc - dist: 0.6515834331512451 - row: 4293
Word: Vin Cuit - dist: 0.6800358891487122 - row: 2995
Word: Vin Rouge - dist: 0.6812756657600403 - row: 400
Word: Vin Rosé - dist: 0.6816913485527039 - row: 399
Found embedding word: Vin
Second try (embedded):
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_Name = 'Vin'
Third try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormAggr LIKE '% vin %' AND V_NormAggr LIKE '% chateau lastours %' AND V_NormAggr LIKE '% famille allard %'
-------------------------------------------
------ERROR--------------------------------
No solution for query: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormAggr LIKE '% vin %' AND V_NormAggr LIKE '% chateau lastours %' AND V_NormAggr LIKE '% famille allard %'
-------------------------------------------
-------------------------------------------
--------------------------------- final result -----------------------------------
{'prompt': '', 'model': 'mistral-large-2411', 'imagePath': '/home/debian/html/nutritwin/output_llm/682903c5e3162/capture.jpg', 'intents': ['Identify foods and beverages in an image'], 'solutions': {'nutrition': [], 'activity': [], 'response': {}}, 'cputime': 2.0621304512023926}
----------------------------------------------------------------------------------
LLM CPU Time: 2.0621304512023926