Input path: /home/debian/html/nutritwin/output_llm/68505951e98f8/input.json Output path: /home/debian/html/nutritwin/output_llm/68505951e98f8/output.json Input text: DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: ================================================================================================================================== Image to be analyzed: /home/debian/html/nutritwin/output_llm/68505951e98f8/capture.jpg ############################################################################################## # For image extraction, pixtral-large-2411 is used # ############################################################################################## ==================================== Prompt ============================================= In the image, identify all the foods and beverages, convert them into an array of JSON with consumed foods. Ignore what it is not connected to nutrition, beverage or food. When a food or a beverage has several instances unify them on a single food or beverage and add the quantities of each. The attribute name must remain in English but the result, so the attribute value, must be in french, and only in french. Provide a solution without explanation. Use only the food & beverage ontology described in this Turtle/RDF model: """ @prefix food: . @prefix rdfs: . @prefix xsd: . @prefix owl: . @prefix prov: . food: a owl:Ontology ; rdfs:comment "Definition of the food archetype"@en . food:name a owl:DatatypeProperty; rdfs:label "name"@en; rdfs:comment """Food or beverage identifier, the name should not contain information related to quantity or container (like glass...). Ignore food or beverage when it is not consumed in the past, now or in the future. The cooking mode is not in the name. The name is only in french."""@en; rdfs:range xsd:string. food:quantity a owl:DatatypeProperty ; rdfs:label "quantity"@en; rdfs:comment "The quantity of food or drink that is or was consumed. Quantity is only in french. Here are examples: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en; rdfs:range xsd:string. food:cookingMethod a owl:DatatypeProperty ; rdfs:label "cooking method"@en; rdfs:comment "The cooking method of food. The cooking method is in french."@en; rdfs:range xsd:string. food:type a owl:DatatypeProperty ; rdfs:label "type of food"@en; rdfs:comment "Identify the type of food."@en; rdfs:range xsd:string. food:food a food:type ; rdfs:label "food" . food:beverage a food:type ; rdfs:label "beverage" . food:timeOfTheDay a owl:DatatypeProperty ; rdfs:label "time of the day"@en; rdfs:comment "Time of the day when food or drink was consumed."@en; rdfs:range xsd:string. food:breakfast a food:timeOfTheDay ; rdfs:label "breakfast" . food:lunch a food:timeOfTheDay ; rdfs:label "lunch" . food:snacking a food:timeOfTheDay ; rdfs:label "snacking" . food:dinner a food:timeOfTheDay ; rdfs:label "dinner" . food:brand a owl:DatatypeProperty ; rdfs:label "Brand"@en; rdfs:comment """Food or beverage brand. The restaurants are not brand. When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."""@en; rdfs:range xsd:string. food:company a owl:DatatypeProperty ; rdfs:label "Company"@en; rdfs:comment "Product company."@en; rdfs:range xsd:string. food:enumEvent a rdfs:Class . food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range food:enumEvent. food:intent a food:enumEvent ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:enumEvent ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:enumEvent ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range food:enumEvent. food:intent a food:enumEvent ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:enumEvent ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:enumEvent ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. """ Here is an example of result: [ { "name": "blanquette de veau", "quantity": "un plat", "cookingMethod": "mijot\u00e9", "timeOfTheDay": "lunch", "company": "Leclerc", "type": "food", "event": "declaration" }, { "name": "eau", "brand": "Evian", "company": "Danone", "timeOfTheDay": "breakfast", "quantity": "un verre", "type": "beverage", "event": "intent" } ] ========================================================================================= ------------------------------ LLM Raw response ----------------------------- [ { "name": "yaourt à la grecque", "quantity": "un", "type": "food", "brand": "Pâturages", "event": "declaration" } ] ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ [ { "name": "yaourt à la grecque", "quantity": "un", "type": "food", "brand": "Pâturages", "event": "declaration" } ] ------------------------------------------------------ ------------------------ After simplification ------------------------ [ { "name": "yaourt \u00e0 la grecque", "quantity": "un", "type": "food", "brand": "P\u00e2turages", "event": "declaration" } ] ---------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': [{'name': 'yaourt à la grecque', 'quantity': 'un', 'type': 'food', 'brand': 'Pâturages', 'event': 'declaration'}], 'cost': 0.0} -------------------------------------------------------------------------------- ----------- result to be analyzed ----------- {'name': 'yaourt à la grecque', 'quantity': 'un', 'type': 'food', 'brand': 'Pâturages', 'event': 'declaration'} First try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% yaourt grecque %' AND V_NormTrademark LIKE '%paturages%' --> CPU time in DB: 0.1279 seconds Word: Yaourt A la Grecque - dist: 0.3945811986923218 - row: 4995 Word: Yaourt A la Greque - dist: 0.399491548538208 - row: 35600 Word: Yaourt A la Grec - dist: 0.40128058195114136 - row: 15139 Word: Yaourt à la Grecque - dist: 0.40254244208335876 - row: 4225 Word: Yaourt à la Greque - dist: 0.41297948360443115 - row: 8453 Found embedding word: Yaourt A la Grecque Second try (embedded): SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_Name = 'Yaourt A la Grecque' ------------- Found solution (max 20) -------------- Yaourt A la Grecque - yaourt grecque - - Nestlé - 0 - 14367328 - 14367328 - OFF#4242a7643c12e2fba6109c1a6f163e8e Yaourt A la Grecque - yaourt grecque - - Yoplait - 0 - 3348261204827 - 3348261204827 - OFF#d23eede59d9e6b67ebcdfc8f48031d79 Yaourt A la Grecque - yaourt grecque - - Nestlé - 0 - 3023290002018 - 14367328 - OFF#baf83d04d8b8fbbd5aa8c5af1064aa00 Yaourt A la Grecque - yaourt grecque - - Nestlé - 0 - 3023290455180 - 14367328 - OFF#14adedd5fca5d81e47191c0f0969afcf Yaourt A la Grecque - yaourt grecque - - Nestlé - 0 - 2918820205904 - 14367328 - OFF#fb2b2f94e60dcdd1a386343b8a29fd01 Yaourt A la Grecque - yaourt grecque - - Leader Price - 0 - 3263858360512 - 3263842621513 - OFF#5ff01b1a7c00d153dcd7ee451d69c476 Yaourt A la Grecque - yaourt grecque - - Monoprix - 0 - 3350033750807 - 3350033639768 - OFF#dfb1b24a5a3e986f9a1b3588676e6fc0 ---------------------------------------------------- --------------------------------- final result ----------------------------------- {'prompt': '', 'model': 'mistral-large-2411', 'imagePath': '/home/debian/html/nutritwin/output_llm/68505951e98f8/capture.jpg', 'intents': ['Identify foods and beverages in an image'], 'solutions': {'nutrition': [{'name': 'Yaourt A la Grecque', 'normName': ' yaourt grecque ', 'comment': '', 'normComment': '', 'rank': 0, 'id': 'OFF#4242a7643c12e2fba6109c1a6f163e8e', 'quantity': 'un', 'quantityLem': '1', 'pack': ['YA2.w125', 'YA9.w125'], 'type': 'food', 'gtin': '14367328', 'gtinRef': '14367328', 'brand': 'Nestlé', 'time': '', 'event': 'declaration', 'serving': 'YA2-100', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 2.437687873840332} ---------------------------------------------------------------------------------- LLM CPU Time: 2.437687873840332