Input path: /home/debian/html/nutritwin/output_llm/6894d4af62ea2/input.json Output path: /home/debian/html/nutritwin/output_llm/6894d4af62ea2/output.json Input text: Une cuillère à soupe de beurre de cacahuète. DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: Une cuillère à soupe de beurre de cacahuète. ================================================================================================================================== ==================================== Prompt ============================================= Identify in this list of intents: ["Identify food and beverage consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Une cuillère à soupe de beurre de cacahuète.###. Format the result in JSON format: {"intents": []}. ========================================================================================= ------------------------------ LLM Raw response ----------------------------- {"intents": ["Identify food and beverage consumption or declaration"]} ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ {"intents": ["Identify food and beverage consumption or declaration"]} ------------------------------------------------------ ERROR: wrong object representation: {'intents': ['Identify food and beverage consumption or declaration']} ------------------------ After simplification ------------------------ { "intents": [ "Identify food and beverage consumption or declaration" ] } ---------------------------------------------------------------------- ==================================== Prompt ============================================= Convert this natural language query : """Une cuillère à soupe de beurre de cacahuète.""" into an array of JSON. Ignore what it is not connected to nutrition, beverage or food. Provide a solution without explanation. Use the following ontology and only this ontology described in this Turtle/RDF model: """ @prefix food: . @prefix rdfs: . @prefix xsd: . @prefix owl: . @prefix prov: . food: a owl:Ontology ; rdfs:comment "Definition of the food archetype"@en . food:name a owl:DatatypeProperty; rdfs:label "name"@en; rdfs:comment """Food or beverage identifier, the name should not contain information related to quantity or container (like glass...). Ignore food or beverage when it is not consumed in the past, now or in the future. The cooking mode is not in the name. The name is only in french."""@en; rdfs:range xsd:string. food:quantity a owl:DatatypeProperty ; rdfs:label "quantity"@en; rdfs:comment "The quantity of food or drink that is or was consumed. Quantity is only in french. Here are examples: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en; rdfs:range xsd:string. food:cookingMethod a owl:DatatypeProperty ; rdfs:label "cooking method"@en; rdfs:comment "The cooking method of food. The cooking method is in french."@en; rdfs:range xsd:string. food:type a owl:DatatypeProperty ; rdfs:label "type of food"@en; rdfs:comment "Identify the type of food."@en; rdfs:range xsd:string. food:food a food:type ; rdfs:label "food" . food:beverage a food:type ; rdfs:label "beverage" . food:timeOfTheDay a owl:DatatypeProperty ; rdfs:label "time of the day"@en; rdfs:comment "Time of the day when food or drink was consumed."@en; rdfs:range xsd:string. food:breakfast a food:timeOfTheDay ; rdfs:label "breakfast" . food:lunch a food:timeOfTheDay ; rdfs:label "lunch" . food:snacking a food:timeOfTheDay ; rdfs:label "snacking" . food:dinner a food:timeOfTheDay ; rdfs:label "dinner" . food:brand a owl:DatatypeProperty ; rdfs:label "Brand"@en; rdfs:comment """Food or beverage brand. The restaurants are not brand. When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."""@en; rdfs:range xsd:string. food:company a owl:DatatypeProperty ; rdfs:label "Company"@en; rdfs:comment "Product company."@en; rdfs:range xsd:string. food:enumEvent a rdfs:Class . food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range food:enumEvent. food:intent a food:enumEvent ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:enumEvent ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:enumEvent ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range food:enumEvent. food:intent a food:enumEvent ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:enumEvent ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:enumEvent ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. """ Here is an example of result: [ { "name": "blanquette de veau", "quantity": "un plat", "cookingMethod": "mijot\u00e9", "timeOfTheDay": "lunch", "company": "Leclerc", "type": "food", "event": "declaration" }, { "name": "eau", "brand": "Evian", "company": "Danone", "timeOfTheDay": "breakfast", "quantity": "un verre", "type": "beverage", "event": "intent" } ] ========================================================================================= ------------------------------ LLM Raw response ----------------------------- [ { "name": "beurre de cacahuète", "quantity": "une cuillère à soupe", "type": "food", "event": "unknown" } ] ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ [ { "name": "beurre de cacahuète", "quantity": "une cuillère à soupe", "type": "food", "event": "unknown" } ] ------------------------------------------------------ ------------------------ After simplification ------------------------ [ { "name": "beurre de cacahu\u00e8te", "quantity": "une cuill\u00e8re \u00e0 soupe", "type": "food", "event": "unknown" } ] ---------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': [{'name': 'beurre de cacahuète', 'quantity': 'une cuillère à soupe', 'type': 'food', 'event': 'unknown'}], 'cost': 0.09798} -------------------------------------------------------------------------------- ----------- result to be analyzed ----------- {'name': 'beurre de cacahuète', 'quantity': 'une cuillère à soupe', 'type': 'food', 'event': 'unknown'} First try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% beurre de cacahuete %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL) --> CPU time in DB: 0.1305 seconds Word: Beurre de Cacahuète - dist: 0.31464165449142456 - row: 35129 Word: Beurre de Cacahuète ou Pâte d'Arachide - dist: 0.4081486165523529 - row: 777 Word: Pur Beurre de Cacahuète - dist: 0.43410220742225647 - row: 51895 Word: Cacahuète - dist: 0.5550997257232666 - row: 3953 Word: Cacahuète ou Arachide - dist: 0.560762345790863 - row: 655 Found embedding word: Beurre de Cacahuète Second try (embedded): SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_Name = 'Beurre de Cacahuète' ------------- Found solution (max 20) -------------- Beurre de Cacahuète - beurre de cacahuete - - La Vie Claire - 0 - 3266191000787 - 3266191000787 - OFF#36baa9d572283b1d624a980df94491ab ---------------------------------------------------- --------------------------------- final result ----------------------------------- {'prompt': 'Une cuillère à soupe de beurre de cacahuète.', 'model': 'mistral-large-2411', 'imagePath': '', 'intents': ['Identify food and beverage consumption or declaration'], 'solutions': {'nutrition': [{'name': 'Beurre de Cacahuète', 'normName': ' beurre de cacahuete ', 'comment': '', 'normComment': '', 'rank': 0, 'id': 'OFF#36baa9d572283b1d624a980df94491ab', 'quantity': 'une cuillère à soupe', 'quantityLem': '1 cuillere soupe', 'pack': ['CSS.w15', 'CCS.w9', 'TRT.w30'], 'type': 'food', 'gtin': '3266191000787', 'gtinRef': '3266191000787', 'brand': 'La Vie Claire', 'time': '', 'event': 'unknown', 'serving': 'CSS-100', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 5.129478454589844} ---------------------------------------------------------------------------------- LLM CPU Time: 5.129478454589844