Input path: /home/debian/html/nutritwin/output_llm/68a84fe49c2a2/input.json Output path: /home/debian/html/nutritwin/output_llm/68a84fe49c2a2/output.json Input text: DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: ================================================================================================================================== Image to be analyzed: /home/debian/html/nutritwin/output_llm/68a84fe49c2a2/capture.jpg ############################################################################################## # For image extraction, pixtral-large-2411 is used # ############################################################################################## ==================================== Prompt ============================================= In the image, identify all the foods and beverages, convert them into an array of JSON with consumed foods. Ignore what it is not connected to nutrition, beverage or food. When a food or a beverage has several instances unify them on a single food or beverage and add the quantities of each. The attribute name must remain in English but the result, so the attribute value, must be in french, and only in french. Provide a solution without explanation. Use only the food & beverage ontology described in this Turtle/RDF model: """ @prefix food: . @prefix rdfs: . @prefix xsd: . @prefix owl: . @prefix prov: . food: a owl:Ontology ; rdfs:comment "Definition of the food archetype"@en . food:name a owl:DatatypeProperty; rdfs:label "name"@en; rdfs:comment """Food or beverage identifier, the name should not contain information related to quantity or container (like glass...). Ignore food or beverage when it is not consumed in the past, now or in the future. The cooking mode is not in the name. The name is only in french."""@en; rdfs:range xsd:string. food:quantity a owl:DatatypeProperty ; rdfs:label "quantity"@en; rdfs:comment "The quantity of food or drink that is or was consumed. Quantity is only in french. Here are examples: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en; rdfs:range xsd:string. food:cookingMethod a owl:DatatypeProperty ; rdfs:label "cooking method"@en; rdfs:comment "The cooking method of food. The cooking method is in french."@en; rdfs:range xsd:string. food:type a owl:DatatypeProperty ; rdfs:label "type of food"@en; rdfs:comment "Identify the type of food."@en; rdfs:range xsd:string. food:food a food:type ; rdfs:label "food" . food:beverage a food:type ; rdfs:label "beverage" . food:timeOfTheDay a owl:DatatypeProperty ; rdfs:label "time of the day"@en; rdfs:comment "Time of the day when food or drink was consumed."@en; rdfs:range xsd:string. food:breakfast a food:timeOfTheDay ; rdfs:label "breakfast" . food:lunch a food:timeOfTheDay ; rdfs:label "lunch" . food:snacking a food:timeOfTheDay ; rdfs:label "snacking" . food:dinner a food:timeOfTheDay ; rdfs:label "dinner" . food:brand a owl:DatatypeProperty ; rdfs:label "Brand"@en; rdfs:comment """Food or beverage brand. The restaurants are not brand. When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."""@en; rdfs:range xsd:string. food:company a owl:DatatypeProperty ; rdfs:label "Company"@en; rdfs:comment "Product company."@en; rdfs:range xsd:string. food:enumEvent a rdfs:Class . food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range food:enumEvent. food:intent a food:enumEvent ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:enumEvent ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:enumEvent ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. food:event a owl:DatatypeProperty ; rdfs:label "event"@en; rdfs:comment "Event of eating or drinking. Each must have an event"@en; rdfs:range food:enumEvent. food:intent a food:enumEvent ; rdfs:label "intent" . rdfs:comment "When the event should happen"@en. food:declaration a food:enumEvent ; rdfs:label "declaration" . rdfs:comment "When the event has already occured"@en. food:unknownEvent a food:enumEvent ; rdfs:label "unknown" ; rdfs:comment "When the event is unknown in the day"@en. """ Here is an example of result: [ { "name": "blanquette de veau", "quantity": "un plat", "cookingMethod": "mijot\u00e9", "timeOfTheDay": "lunch", "company": "Leclerc", "type": "food", "event": "declaration" }, { "name": "eau", "brand": "Evian", "company": "Danone", "timeOfTheDay": "breakfast", "quantity": "un verre", "type": "beverage", "event": "intent" } ] ========================================================================================= ------------------------------ LLM Raw response ----------------------------- [ { "name": "viande hachée", "quantity": "une portion", "cookingMethod": "cru", "type": "food", "event": "declaration" }, { "name": "tomates", "quantity": "plusieurs morceaux", "type": "food", "event": "declaration" } ] ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ [ { "name": "viande hachée", "quantity": "une portion", "cookingMethod": "cru", "type": "food", "event": "declaration" }, { "name": "tomates", "quantity": "plusieurs morceaux", "type": "food", "event": "declaration" } ] ------------------------------------------------------ ------------------------ After simplification ------------------------ [ { "name": "viande hach\u00e9e", "quantity": "une portion", "cookingMethod": "cru", "type": "food", "event": "declaration" }, { "name": "tomates", "quantity": "plusieurs morceaux", "type": "food", "event": "declaration" } ] ---------------------------------------------------------------------- --------------------------------- LLM result ----------------------------------- {'response': [{'name': 'viande hachée', 'quantity': 'une portion', 'cookingMethod': 'cru', 'type': 'food', 'event': 'declaration'}, {'name': 'tomates', 'quantity': 'plusieurs morceaux', 'type': 'food', 'event': 'declaration'}], 'cost': 0.0} -------------------------------------------------------------------------------- ----------- result to be analyzed ----------- {'name': 'viande hachée', 'quantity': 'une portion', 'cookingMethod': 'cru', 'type': 'food', 'event': 'declaration'} First try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% viande hachee %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL) --> CPU time in DB: 0.1203 seconds Word: Viande Hachée - dist: 0.31274017691612244 - row: 37982 Word: Viande Haché - dist: 0.33098074793815613 - row: 53400 Word: Viande Hachée Charolais - dist: 0.447451651096344 - row: 30503 Word: Viande Hachée 15% BIO - dist: 0.4571866989135742 - row: 27535 Word: Haché à Base de Boeuf ou Préparation de Viande Hachée de Boeuf - dist: 0.48891937732696533 - row: 1055 Found embedding word: Viande Hachée Second try (embedded): SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_Name = 'Viande Hachée' ------------- Found solution (max 20) -------------- Viande Hachée - viande hachee - - Bigard - 0 - 3273230068134 - 3273230068134 - OFF#cfd99e7c4082216b6cbdc4f0fd04bf67 ---------------------------------------------------- ERROR: no solution for picto in the first solution ----------- result to be analyzed ----------- {'name': 'tomates', 'quantity': 'plusieurs morceaux', 'type': 'food', 'event': 'declaration'} First try: SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% tomate %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL) ------------- Found solution (max 20) -------------- Tomate - tomate - crue - - 50564 - - - CIQ#9019c33adc1aff1aeff07888f760e3dc Tomate - tomate - purée - - 0 - - - CIQ#98e08e3b00fecca745d7da29e1015a95 Tomate - tomate - pulpe - - 0 - - - CIQ#fd785fdebdb36567c615d2cf46456ffd Tomate - tomate - concentré - - 0 - - - CIQ#7020e6d5e5bd9e09aaa1661220ba09b7 Tomate - tomate - pelée, égouttée - - 0 - - - CIQ#e42ed02a1db9c324a72333e04d401dc1 Tomate - tomate - double concentré - - 0 - - - CIQ#316f9d6fdf5ec84b18998fae96416e09 Tomate - tomate - séchée, à l'huile - - 0 - - - CIQ#b7e1592c157fef2c1429cdc04e65f429 Tomate - tomate - rôtie/cuite au four - - 0 - - - CIQ#abc1ee10e1ef1b8d9ea01e5cf5081ac9 Tomate - tomate - pulpe et peau, rôtie/cuite au four - - 0 - - - CIQ#a670b9fa38af8c6557b321a08d7ab367 Tomate Ronde - tomate ronde - crue - - 0 - - - CIQ#684dc9134dc864e3c83f5330fa9965d4 Tomate Farcie - tomate farcie - - - 1889 - - - CIQ#6662d127dcc7f87a176e7cda4540b6d5 Tomate Cerise - tomate cerise - crue - - 0 - - - CIQ#9f76e2172737f480f1c9b66f3627bfb0 Tomate Grappe - tomate grappe - crue - - 0 - - - CIQ#2bdccc054e39de9382dcb2ff97b1204d Tomate Cerise - tomate cerise - tomate cerise - - 0 - - - KCA#fc7d1647e177b261c9a22262037f6216 Tomate Séchée - tomate sechee - tomate séchée - - 0 - - - KCA#1dfa8e1ad113a5175e6a3ba4bee46416 Tomates au Four - tomate four - au four - - 0 - - - KCA#7bd06a9534bdcb97e7af0143ac0124d5 Tomates Farcies - tomate farcie - tomates farcies - - 0 - - - KCA#6e01a7596f6a74b9bca3e51ca2721e81 Tomates Tartares - tomate tartare - tomates tartares - - 0 - - - KCA#e15190c59aa8508125d81de65be88670 Tomate Concentrée - tomate concentree - tomate concentrée - - 0 - - - KCA#22854ad0ad81beeccc0841c1f0c5d66c Tomates Provençales - tomate provencale - tomates provençales - - 0 - - - KCA#799358a4b450be03bfd4014d3908c6dc ---------------------------------------------------- ERROR: no solution for picto in the first solution ERROR: no solution for picto in the first solution ERROR: no solution for picto in the first solution ERROR: no solution for picto in the first solution ERROR: no solution for picto in the first solution ERROR: no solution for picto in the first solution ERROR: no solution for picto in the first solution ERROR: no solution for picto in the first solution ERROR: no solution for picto in the first solution --------------------------------- final result ----------------------------------- {'prompt': '', 'model': 'mistral-large-2411', 'imagePath': '/home/debian/html/nutritwin/output_llm/68a84fe49c2a2/capture.jpg', 'intents': ['Identify foods and beverages in an image'], 'solutions': {'nutrition': [{'name': 'Viande Hachée', 'normName': ' viande hachee ', 'comment': '', 'normComment': '', 'rank': 0, 'id': 'OFF#cfd99e7c4082216b6cbdc4f0fd04bf67', 'quantity': 'une portion', 'quantityLem': '1 portion', 'pack': ['STH.w125'], 'type': 'food', 'gtin': '3273230068134', 'gtinRef': '3273230068134', 'brand': 'Bigard', 'time': '', 'event': 'declaration', 'serving': '', 'posiNormName': 0}, {'name': 'Tomate', 'normName': ' tomate ', 'comment': 'crue', 'normComment': ' crue ', 'rank': 50564, 'id': 'CIQ#9019c33adc1aff1aeff07888f760e3dc', 'quantity': 'plusieurs morceaux', 'quantityLem': 'plusieur morceau', 'pack': ['TOM.w150'], 'type': 'food', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': '', 'event': 'declaration', 'serving': '', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 3.087397575378418} ---------------------------------------------------------------------------------- LLM CPU Time: 3.087397575378418