Input path: /home/debian/html/nutritwin/output_llm/68bffd2580429/input.json
Output path: /home/debian/html/nutritwin/output_llm/68bffd2580429/output.json
Input text: Une endive.
DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3
Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json
Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json
==================================================================================================================================
Prompt from user: Une endive.
==================================================================================================================================
==================================== Prompt =============================================
Identify in this list of intents: ["Identify food and beverage consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Une endive.###.
Format the result in JSON format: {"intents": []}.
=========================================================================================
------------------------------ LLM Raw response -----------------------------
{"intents": ["Identify food and beverage consumption or declaration"]}
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
{"intents": ["Identify food and beverage consumption or declaration"]}
------------------------------------------------------
ERROR: wrong object representation:
{'intents': ['Identify food and beverage consumption or declaration']}
------------------------ After simplification ------------------------
{
"intents": [
"Identify food and beverage consumption or declaration"
]
}
----------------------------------------------------------------------
==================================== Prompt =============================================
Convert this natural language query : """Une endive.""" into an array of JSON.
Ignore what it is not connected to nutrition, beverage or food.
Provide a solution without explanation.
Use the following ontology and only this ontology described in this Turtle/RDF model:
"""
@prefix food: .
@prefix rdfs: .
@prefix xsd: .
@prefix owl: .
@prefix prov: .
food: a owl:Ontology ;
rdfs:comment "Definition of the food archetype"@en .
food:name a owl:DatatypeProperty;
rdfs:label "name"@en;
rdfs:comment """Food or beverage identifier, the name should not contain information related to quantity or container (like glass...).
Ignore food or beverage when it is not consumed in the past, now or in the future.
The cooking mode is not in the name. The name is only in french."""@en;
rdfs:range xsd:string.
food:quantity a owl:DatatypeProperty ;
rdfs:label "quantity"@en;
rdfs:comment "The quantity of food or drink that is or was consumed. Quantity is only in french. Here are examples: 'un quignon', 'un cornet', 'un verre', 'une tranche', 'une boule', 'un', 'deux', 'trois',... Keep the same language."@en;
rdfs:range xsd:string.
food:cookingMethod a owl:DatatypeProperty ;
rdfs:label "cooking method"@en;
rdfs:comment "The cooking method of food. The cooking method is in french."@en;
rdfs:range xsd:string.
food:type a owl:DatatypeProperty ;
rdfs:label "type of food"@en;
rdfs:comment "Identify the type of food."@en;
rdfs:range xsd:string.
food:food a food:type ;
rdfs:label "food" .
food:beverage a food:type ;
rdfs:label "beverage" .
food:timeOfTheDay a owl:DatatypeProperty ;
rdfs:label "time of the day"@en;
rdfs:comment "Time of the day when food or drink was consumed."@en;
rdfs:range xsd:string.
food:breakfast a food:timeOfTheDay ;
rdfs:label "breakfast" .
food:lunch a food:timeOfTheDay ;
rdfs:label "lunch" .
food:snacking a food:timeOfTheDay ;
rdfs:label "snacking" .
food:dinner a food:timeOfTheDay ;
rdfs:label "dinner" .
food:brand a owl:DatatypeProperty ;
rdfs:label "Brand"@en;
rdfs:comment """Food or beverage brand. The restaurants are not brand.
When the name is very known (ex: Activia, Coca) and the brand is not mentioned, guess the brand."""@en;
rdfs:range xsd:string.
food:company a owl:DatatypeProperty ;
rdfs:label "Company"@en;
rdfs:comment "Product company."@en;
rdfs:range xsd:string.
food:enumEvent a rdfs:Class .
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
food:event a owl:DatatypeProperty ;
rdfs:label "event"@en;
rdfs:comment "Event of eating or drinking. Each must have an event"@en;
rdfs:range food:enumEvent.
food:intent a food:enumEvent ;
rdfs:label "intent" .
rdfs:comment "When the event should happen"@en.
food:declaration a food:enumEvent ;
rdfs:label "declaration" .
rdfs:comment "When the event has already occured"@en.
food:unknownEvent a food:enumEvent ;
rdfs:label "unknown" ;
rdfs:comment "When the event is unknown in the day"@en.
"""
Here is an example of result:
[
{
"name": "blanquette de veau",
"quantity": "un plat",
"cookingMethod": "mijot\u00e9",
"timeOfTheDay": "lunch",
"company": "Leclerc",
"type": "food",
"event": "declaration"
},
{
"name": "eau",
"brand": "Evian",
"company": "Danone",
"timeOfTheDay": "breakfast",
"quantity": "un verre",
"type": "beverage",
"event": "intent"
}
]
=========================================================================================
------------------------------ LLM Raw response -----------------------------
[
{
"name": "endive",
"quantity": "une",
"type": "food",
"event": "unknownEvent"
}
]
-----------------------------------------------------------------------------
----------------- Make it compliant ------------------
[
{
"name": "endive",
"quantity": "une",
"type": "food",
"event": "unknownEvent"
}
]
------------------------------------------------------
------------------------ After simplification ------------------------
[
{
"name": "endive",
"quantity": "une",
"type": "food",
"event": "unknownEvent"
}
]
----------------------------------------------------------------------
--------------------------------- LLM result -----------------------------------
{'response': [{'name': 'endive', 'quantity': 'une', 'type': 'food', 'event': 'unknownEvent'}], 'cost': 0.09587999999999999}
--------------------------------------------------------------------------------
----------- result to be analyzed -----------
{'name': 'endive', 'quantity': 'une', 'type': 'food', 'event': 'unknownEvent'}
First try:
SELECT V_Name,V_Comment,V_NormName,V_NormComment,V_PackType,V_GTIN,V_GTINRef,V_ID,V_GlobalCount,V_NormTrademark,V_Trademark,V_NormAggr FROM KCALME_TABLE WHERE V_NormName LIKE '% endive %' AND (V_NormTrademark = '' OR V_NormTrademark IS NULL)
------------- Found solution (max 20) --------------
Endive - endive - crue - - 0 - - - CIQ#c9461ebf9e50ce9c4870c75eda51fa7e
Endive - endive - rôtie/cuite au four - - 0 - - - CIQ#cfbace3f9abdd920eb03851948cb5ad2
Endives Roties - endive rotie - - - 164 - - - KCA#d5640e1c6d39d93bd34a3fbe03f085b0
Endives Braisées - endive braisee - - - 712 - - - KCA#2baf4cba05f671f35117316b40fa765f
Endives Meunière - endive meuniere - - - 23 - - - KCA#1f33cd25fe0dbfcb3d3afdb7dae639a5
Endives Surprise - endive surprise - - - 9 - - - KCA#a6a020ed2298844c2bbc58f681c53ab5
Endives Parisiennes - endive parisienne - - - 7 - - - KCA#3dd1bce598559b51d5e932f72313d501
Salade d'Endives - salade endive - - - 3059 - - - KCA#22f49bd5d9db2619011406f0bcce4e4b
Gratin d'Endives et Jambon - gratin endive jambon - - - 672 - - - KCA#5943f9f3a617979b609eceb93b42a94e
----------------------------------------------------
--------------------------------- final result -----------------------------------
{'prompt': 'Une endive.', 'model': 'mistral-large-2411', 'imagePath': '', 'intents': ['Identify food and beverage consumption or declaration'], 'solutions': {'nutrition': [{'name': 'Endive', 'normName': ' endive ', 'comment': 'crue', 'normComment': ' crue ', 'rank': 0, 'id': 'CIQ#c9461ebf9e50ce9c4870c75eda51fa7e', 'quantity': 'une', 'quantityLem': '1', 'pack': ['APL.w150'], 'type': 'food', 'gtin': '', 'gtinRef': '', 'brand': '', 'time': '', 'event': 'unknownEvent', 'serving': 'APL-100', 'posiNormName': 0}], 'activity': [], 'response': {}}, 'cputime': 1.684802532196045}
----------------------------------------------------------------------------------
LLM CPU Time: 1.684802532196045