Input path: /home/debian/html/nutritwin/output_llm/68ff53490c66b/input.json Output path: /home/debian/html/nutritwin/output_llm/68ff53490c66b/output.json Input text: Ajouter. DB path: __deriveddata__/DerivedObjects/Data/KcalMeDB_fr.sl3 Picto path: __deriveddata__/DerivedObjects/Data/PictoMatcherNetNG_fr.json Sport grounding path: __deriveddata__/DerivedObjects/Data/DerivedSportMET.json ================================================================================================================================== Prompt from user: Ajouter. ================================================================================================================================== ==================================== Prompt ============================================= Identify in this list of intents: ["Identify food and beverage consumption or declaration", "Identify the user physical activity", "Answer a nutrition question", "Other intent"], the intents of the prompt: ###Ajouter.###. Format the result in JSON format: {"intents": []}. ========================================================================================= ------------------------------ LLM Raw response ----------------------------- {"intents":["Other intent"]} ----------------------------------------------------------------------------- ----------------- Make it compliant ------------------ {"intents":["Other intent"]} ------------------------------------------------------ ERROR: wrong object representation: {'intents': ['Other intent']} ------------------------ After simplification ------------------------ { "intents": [ "Other intent" ] } ---------------------------------------------------------------------- --------------------------------- final result ----------------------------------- {'prompt': 'Ajouter.', 'model': 'mistral-large-2411', 'imagePath': '', 'intents': ['Other intent'], 'solutions': {'nutrition': [], 'activity': [], 'response': {}}, 'cputime': 0.40077996253967285} ---------------------------------------------------------------------------------- LLM CPU Time: 0.40077996253967285 Traceback (most recent call last): File "/home/debian/html/nutritwin/resources/KCALLMMainService.py", line 71, in omess = KCALLMMain.runEvent(event) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/debian/html/nutritwin/resources/KCALLMMain.py", line 132, in runEvent resp = KCALLMMainSpeechToData.execute(speech, imagePath, image64, comment, appId, device, version, age, gender, longitude, latitude, test) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/debian/html/nutritwin/resources/KCALLMMainSpeechToData.py", line 111, in execute response = table.put_item( ^^^^^^^^^^^^^^^ File "/home/debian/myVirtualPythonEnvV2/lib/python3.11/site-packages/boto3/resources/factory.py", line 581, in do_action response = action(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/debian/myVirtualPythonEnvV2/lib/python3.11/site-packages/boto3/resources/action.py", line 88, in __call__ response = getattr(parent.meta.client, operation_name)(*args, **params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/debian/myVirtualPythonEnvV2/lib/python3.11/site-packages/botocore/client.py", line 565, in _api_call return self._make_api_call(operation_name, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/debian/myVirtualPythonEnvV2/lib/python3.11/site-packages/botocore/client.py", line 1021, in _make_api_call raise error_class(parsed_response, operation_name) botocore.exceptions.ClientError: An error occurred (UnrecognizedClientException) when calling the PutItem operation: The security token included in the request is invalid.